2024屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學中考數學適應性模擬試題含解析_第1頁
2024屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學中考數學適應性模擬試題含解析_第2頁
2024屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學中考數學適應性模擬試題含解析_第3頁
2024屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學中考數學適應性模擬試題含解析_第4頁
2024屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省蕭山區(qū)黨灣鎮(zhèn)初級中學中考數學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小明從A處出發(fā)沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調整到與出發(fā)時一致,則方向的調整應是()A.右轉80° B.左轉80° C.右轉100° D.左轉100°2.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數為()A.50° B.40° C.30° D.25°3.下列大學的?;請D案是軸對稱圖形的是()A. B. C. D.4.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>25.在學校演講比賽中,10名選手的成績折線統(tǒng)計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.56.在數軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.7.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山8.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數是()A.100° B.80° C.60° D.50°9.下列實數中,有理數是()A. B. C.π D.10.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.11.如圖,點P(x,y)(x>0)是反比例函數y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變12.如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為(

)A.4 B.﹣4 C.﹣6 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.今年“五一”節(jié)日期間,我市四個旅游景區(qū)共接待游客約303000多人次,這個數據用科學記數法可記為_____.14.一次函數與的圖象如圖,則的解集是__.15.一個不透明的口袋中有5個紅球,2個白球和1個黑球,它們除顏色外完全相同,從中任意摸出一個球,則摸出的是紅球的概率是_____.16.如果一個矩形的面積是40,兩條對角線夾角的正切值是,那么它的一條對角線長是__________.17.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.18.計算(2+1)(2-1)的結果為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)水果店老板用600元購進一批水果,很快售完;老板又用1250元購進第二批水果,所購件數是第一批的2倍,但進價比第一批每件多了5元,問第一批水果每件進價多少元?20.(6分)如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點O、B、C、A、P在同一平面內,求山坡的坡度.(參考數據sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)21.(6分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.22.(8分)先化簡,再求值:,其中x為方程的根.23.(8分)已知:a+b=4(1)求代數式(a+1)(b+1)﹣ab值;(2)若代數式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.24.(10分)小敏參加答題游戲,答對最后兩道單選題就順利通關.第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設第一道題的正確選項是,第二道題的正確選項是,解答下列問題:(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關的概率;(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關的可能性更大.25.(10分)如圖,已知拋物線經過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.26.(12分)如圖,一農戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?27.(12分)已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

60°+20°=80°.由北偏西20°轉向北偏東60°,需要向右轉.故選A.2、A【解析】

由兩直線平行,同位角相等,可求得∠3的度數,然后求得∠2的度數.【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.3、B【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;

B、是軸對稱圖形,故本選項正確;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、D【解析】

根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.5、C【解析】試題分析:根據折線統(tǒng)計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.6、A【解析】根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得不等式解集,然后得出在數軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.7、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.8、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B9、B【解析】

實數分為有理數,無理數,有理數有分數、整數,無理數有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數,故本選項錯誤,

B、無限循環(huán)小數為有理數,符合;

C、為無理數,故本選項錯誤;

D、不能正好開方,即為無理數,故本選項錯誤;故選B.【點睛】本題考查的知識點是實數范圍內的有理數的判斷,解題關鍵是從實際出發(fā)有理數有分數,自然數等,無理數有、根式下開不盡的從而得到了答案.10、A【解析】

根據左視圖的概念得出各選項幾何體的左視圖即可判斷.【詳解】解:A選項幾何體的左視圖為;

B選項幾何體的左視圖為;

C選項幾何體的左視圖為;

D選項幾何體的左視圖為;

故選:A.【點睛】本題考查由三視圖判斷幾何體,解題的關鍵是熟練掌握左視圖的概念.11、D【解析】

作PB⊥OA于B,如圖,根據垂徑定理得到OB=AB,則S△POB=S△PAB,再根據反比例函數k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.12、C【解析】分析:根據圖象的旋轉變化規(guī)律以及二次函數的平移規(guī)律得出平移后解析式,進而求出m的值,由2017÷5=403…2,可知點P(2018,m)在此“波浪線”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當y=0時,﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…;如此進行下去,得到一“波浪線”,∴A1A2=A2A3=…=OA1=5,∴拋物線C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當x=2018時,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點睛:此題主要考查了二次函數的平移規(guī)律,根據已知得出二次函數旋轉后解析式是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3.03×101【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于303000有6位整數,所以可以確定n=6-1=1.詳解:303000=3.03×101,故答案為:3.03×101.點睛:此題考查科學記數法表示較大的數的方法,準確確定a與n的值是解題的關鍵.14、【解析】

不等式kx+b-(x+a)>0的解集是一次函數y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數的圖象與一元一次不等式的關系:從函數的角度看,就是尋求使一次函數y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.15、【解析】

根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.【詳解】解:由于共有8個球,其中紅球有5個,則從袋子中隨機摸出一個球,摸出紅球的概率是.故答案為.【點睛】本題考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、1.【解析】

如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點睛】本題考查了矩形的性質、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數構建方程解決問題.17、2.1或2【解析】

在Rt△ACB中,根據勾股定理可求AB的長,根據折疊的性質可得QD=BD,QP=BP,根據三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據勾股定理可求QP,繼而可求得答案.【詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,

AB==2,

由折疊的性質可得QD=BD,QP=BP,

又∵QD⊥BC,

∴DQ∥AC,

∵D是AB的中點,

∴DE=AC=3,BD=AB=1,BE=BC=4,

①當點P在DE右側時,

∴QE=1-3=2,

在Rt△QEP中,QP2=(4-BP)2+QE2,

即QP2=(4-QP)2+22,

解得QP=2.1,

則BP=2.1.

②當點P在DE左側時,同①知,BP=2

故答案為:2.1或2.【點睛】考查了折疊的性質、直角三角形的性質以及勾股定理.此題難度適中,注意數形結合思想的應用,注意折疊中的對應關系.18、1【解析】

利用平方差公式進行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進行二次根式的乘除運算,然后合并同類二次根式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、120【解析】

設第一批水果每件進價為x元,則第二批水果每件進價為(x+5)元,根據用1250元所購件數是第一批的2倍,列方程求解.【詳解】解:設第一批水果每件進價為x元,則第二批水果每件進價為(x+5)元,由題意得,×2=,解得:x=120,經檢驗:x=120是原分式方程的解,且符合題意.答:第一批水果每件進價為120元.【點睛】本題考查了分式方程的應用,解題的關鍵是熟練的掌握分式方程的應用.20、【解析】

過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據CD﹣BD=BC,列出方程,求出PD=2,進而求出PE=4,AE=5,然后在△APE中利用三角函數的定義即可求解.【詳解】解:如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.21、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】

(1)應用待定系數法求解析式;(1)設出點T坐標,表示△TAC三邊,進行分類討論;(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設P(m,),則Q(m,),∵Q、R關于x=1對稱∴R(1﹣m,),①當點P在直線l左側時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數幾何綜合題,考查了二次函數性質、三角形全等和等腰三角形判定,熟練掌握相關知識,應用數形結合和分類討論的數學思想進行解題是關鍵.22、1【解析】

先將除式括號里面的通分后,將除法轉換成乘法,約分化簡.然后解一元二次方程,根據分式有意義的條件選擇合適的x值,代入求值.【詳解】解:原式=.解得,,∵時,無意義,∴?。敃r,原式=.23、(1)5;(2)1或﹣1.【解析】

(1)將原式展開、合并同類項化簡得a+b+1,再代入計算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,據此進一步計算可得.【詳解】(1)原式=ab+a+b+1﹣ab=a+b+1,當a+b=4時,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,則a﹣b=1或﹣1.【點睛】本題主要考查代數式的求值,解題的關鍵是掌握多項式乘多項式的運算法則及整體思想的運用.24、(1);(2);(3)一.【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖(用Z表示正確選項,C表示錯誤選項)展示所有9種等可能的結果數,找出小敏順利通關的結果數,然后根據概率公式計算出小敏順利通關的概率;

(3)與(2)方法一樣求出小穎將“求助”留在第一道題使用,小敏順利通關的概率,然后比較兩個概率的大小可判斷小敏在答第幾道題時使用“求助”.【詳解】解:(1)若小敏第一道題不使用“求助”,那么小敏答對第一道題的概率=;

故答案為;

(2)若小敏將“求助”留在第二道題使用,那么小敏順利通關的概率是.理由如下:

畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有9種等可能的結果數,其中小穎順利通關的結果數為1,

所以小敏順利通關的概率=;

(3)若小敏將“求助”留在第一道題使用,畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有8種等可能的結果數,其中小敏順利通關的結果數為1,所以小敏將“求助”留在第一道題使用,小敏順利通關的概率=,

由于>,

所以建議小敏在答第一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論