版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省宣城2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在等差數(shù)列中,為其前n項(xiàng)和,若,則()A.60 B.75 C.90 D.1052.已知向量,,則向量在向量方向上的投影為()A. B. C. D.3.從三件正品、一件次品中隨機(jī)取出兩件,則取出的產(chǎn)品全是正品的概率是()A. B. C. D.4.某人射擊一次,設(shè)事件A:“擊中環(huán)數(shù)小于4”;事件B:“擊中環(huán)數(shù)大于4”;事件C:“擊中環(huán)數(shù)不小于4”;事件D:“擊中環(huán)數(shù)大于0且小于4”,則正確的關(guān)系是A.A和B為對立事件 B.B和C為互斥事件C.C與D是對立事件 D.B與D為互斥事件5.中,,,,則()A.1 B. C. D.46.已知各項(xiàng)為正數(shù)的等比數(shù)列中,,,則公比q=A.4 B.3 C.2 D.7.在中,角的對邊分別是,已知,則()A. B. C. D.或8.已知數(shù)列{an}滿足a1=1,an+1=pan+q,且a2=3,a4=15,則p,q的值為()A. B. C.或 D.以上都不對9.如圖所示,垂直于以為直徑的圓所在的平面,為圓上異于的任一點(diǎn),則下列關(guān)系中不正確的是()A. B.平面 C. D.10.一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄穑瑥闹腥我馊〕鲆粋€(gè),則取出的小正方體兩面涂有油漆的概率是()A.127 B.29 C.4二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)等比數(shù)列的公比,前項(xiàng)和為,則.12.已知a,b為常數(shù),若,則______;13.設(shè),,為三條不同的直線,,為兩個(gè)不同的平面,下列命題中正確的是______.(1)若,,,則;(2)若,,,則;(3)若,,,,則;(4)若,,,則.14.已知,若角的終邊經(jīng)過點(diǎn),求的值.15.已知過兩點(diǎn),的直線的傾斜角是,則______.16.若、分別是方程的兩個(gè)根,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓:.(1)過的直線與圓:交于,兩點(diǎn),若,求直線的方程;(2)過的直線與圓:交于,兩點(diǎn),直接寫出面積取值范圍;(3)已知,,圓上是否存在點(diǎn),使得,請說明理由.18.等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求的值.19.已知數(shù)列是遞增的等比數(shù)列,且(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)為數(shù)列的前n項(xiàng)和,,求數(shù)列的前n項(xiàng)和.20.如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.(Ⅰ)求證:平面;(Ⅱ)求證:平面;(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.21.如圖,三棱柱,底面,且為正三角形,,,為中點(diǎn).(1)求證:直線平面;(2)求二面角的大?。?/p>
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
由條件,利用等差數(shù)列下標(biāo)和性質(zhì)可得,進(jìn)而得到結(jié)果.【詳解】,即,而,故選B.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查運(yùn)算能力與推理能力,屬于中檔題.2、B【解析】
先計(jì)算向量夾角,再利用投影定義計(jì)算即可.【詳解】由向量,,則,,向量在向量方向上的投影為.故選:B【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)表示以及向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.3、B【解析】
利用古典概型概率公式求解即可.【詳解】設(shè)三件正品分別記為,一件次品記為則從三件正品、一件次品中隨機(jī)取出兩件,取出的產(chǎn)品可能為,共6種情況,其中取出的產(chǎn)品全是正品的有3種所以產(chǎn)品全是正品的概率故選:B【點(diǎn)睛】本題主要考查了利用古典概型概率公式計(jì)算概率,屬于基礎(chǔ)題.4、D【解析】
根據(jù)互斥事件和對立事件的概念,進(jìn)行判定,即可求解,得到答案.【詳解】由題意,A項(xiàng)中,事件“擊中環(huán)數(shù)等于4環(huán)”可能發(fā)生,所以事件A和B為不是對立事件;B項(xiàng)中,事件B和C可能同時(shí)發(fā)生,所以事件B和C不是互斥事件;C項(xiàng)中,事件“擊中環(huán)數(shù)等于0環(huán)”可能發(fā)生,所以事件C和D為不是對立事件;D項(xiàng)中,事件B:“擊中環(huán)數(shù)大于4”與事件D:“擊中環(huán)數(shù)大于0且小于4”,不可能同時(shí)發(fā)生,所以B與D為互斥事件,故選D.【點(diǎn)睛】本題主要考查了互斥事件和對立事件的概念及判定,其中解答中熟記互斥事件和對立事件的概念,準(zhǔn)確判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5、C【解析】
利用三角形內(nèi)角和為可求得;利用正弦定理可求得結(jié)果.【詳解】由正弦定理得:本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦定理解三角形,屬于基礎(chǔ)題.6、C【解析】
由,利用等比數(shù)列的性質(zhì),結(jié)合各項(xiàng)為正數(shù)求出,從而可得結(jié)果.【詳解】,,,,故選C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì),以及等比數(shù)列基本量運(yùn)算,意在考查靈活運(yùn)用所學(xué)知識解決問題的能力,屬于簡單題.7、B【解析】
由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點(diǎn):正弦定理8、C【解析】
根據(jù)數(shù)列的遞推公式得、建立方程組求得.【詳解】由已知得:所以解得:或.故選C.【點(diǎn)睛】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題.9、C【解析】
由平面,得,再由,得到平面,進(jìn)而得到,即可判斷出結(jié)果.【詳解】因?yàn)榇怪庇谝詾橹睆降膱A所在的平面,即平面,得,A正確;又為圓上異于的任一點(diǎn),所以,平面,,B,D均正確.故選C.【點(diǎn)睛】本題主要考查線面垂直,熟記線面垂直的判定定理與性質(zhì)定理即可,屬于??碱}型.10、C【解析】
先求出基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),由此能求出在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率.【詳解】∵一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,∴基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),則在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率P=1227=故選:C【點(diǎn)睛】本題考查概率的求法,考查古典概型、正方體性質(zhì)等基礎(chǔ)知識,考查推理論證能力、空間想象能力,考查函數(shù)與方程思想,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、15【解析】分析:運(yùn)用等比數(shù)列的前n項(xiàng)和公式與數(shù)列通項(xiàng)公式即可得出的值.詳解:數(shù)列為等比數(shù)列,故答案為15.點(diǎn)睛:本題考查了等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,考查學(xué)生對基本概念的掌握能力與計(jì)算能力.12、2【解析】
根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計(jì)算出的值,由此可計(jì)算出的值.【詳解】因?yàn)?,所以,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查根據(jù)極限的值求解參數(shù),難度較易.13、(1)【解析】
利用線線平行的傳遞性、線面垂直的判定定理判定.【詳解】(1),,,則,正確(2)若,,,則,錯(cuò)誤(3)若,則不成立,錯(cuò)誤(4)若,,,則,錯(cuò)誤【點(diǎn)睛】本題主要考查線面垂直的判定定理判定,考查了空間想象能力,屬于中檔題.14、【解析】
由條件利用任意角的三角函數(shù)的定義,求得和的值,從而可得的值.【詳解】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,,則.故答案為:【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.15、【解析】
由兩點(diǎn)求斜率公式及斜率等于傾斜角的正切值列式求解.【詳解】解:由已知可得:,即,則.故答案為.【點(diǎn)睛】本題考查直線的斜率,考查直線傾斜角與斜率的關(guān)系,是基礎(chǔ)題.16、【解析】
利用韋達(dá)定理可求出和的值,然后利用兩角和的正切公式可計(jì)算出的值.【詳解】由韋達(dá)定理得,,因此,.故答案為:.【點(diǎn)睛】本題考查利用兩角和的正切公式求值,同時(shí)也考查了一元二次方程根與系數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2);(3)存在,理由見解析【解析】
求得圓的圓心和半徑.(1)設(shè)出直線的方程,利用弦長、勾股定理和點(diǎn)到直線距離列方程,解方程求得直線的斜率,進(jìn)而求得直線的方程.(2)利用三角形的面積公式列式,由此求得面積取值范圍.(3)求得三角形外接圓的方程,根據(jù)圓和圓的位置關(guān)系,判斷出點(diǎn)存在.【詳解】圓心為,半徑為.(1)直線有斜率,設(shè):,圓心到直線的距離為,∵,則由,得,直線的方程為或(2)依題意可知,三角形的面積為,由于,所以,所以.(3)設(shè)三角形的外接圓圓心為(),半徑為,由正弦定理得,,所以,所以圓的圓心為,所以圓的方程為,圓與圓滿足圓心距:,∴圓與圓相交于兩點(diǎn),圓上存在兩個(gè)這樣的點(diǎn),滿足題意.【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查圓和圓的位置關(guān)系,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.18、(1);(2)【解析】(Ⅰ)設(shè)等差數(shù)列的公差為.由已知得,解得.所以.(Ⅱ)由(Ⅰ)可得.所以.考點(diǎn):1、等差數(shù)列通項(xiàng)公式;2、分組求和法.19、(Ⅰ)(Ⅱ)【解析】試題分析:(1)設(shè)等比數(shù)列的公比為q,,根據(jù)已知由等比數(shù)列的性質(zhì)可得,聯(lián)立解方程再由數(shù)列為遞增數(shù)列可得則通項(xiàng)公式可得(2)根據(jù)等比數(shù)列的求和公式,有所以,裂項(xiàng)求和即可試題解析:(1)設(shè)等比數(shù)列的公比為q,所以有聯(lián)立兩式可得或者又因?yàn)閿?shù)列為遞增數(shù)列,所以q>1,所以數(shù)列的通項(xiàng)公式為(2)根據(jù)等比數(shù)列的求和公式,有所以所以考點(diǎn):等比數(shù)列的通項(xiàng)公式和性質(zhì),數(shù)列求和20、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析【解析】
(Ⅰ)轉(zhuǎn)化為證明;(Ⅱ)轉(zhuǎn)化為證明,;(Ⅲ)根據(jù)線面平行的性質(zhì)定理.【詳解】(Ⅰ)因?yàn)樗倪呅螢檎叫?,所以,由于平面,平面,所以平?(Ⅱ)因?yàn)樗倪呅螢檎叫?,所?平面平面,平面平面,所以平面.所以.取中點(diǎn),連接.由,,,可得四邊形為正方形.所以.所以.所以.因?yàn)?,所以平?(Ⅲ)存在,當(dāng)為的中點(diǎn)時(shí),平面,此時(shí).證明如下:連接交于點(diǎn),由于四邊形為正方形,所以是的中點(diǎn),同時(shí)也是的中點(diǎn).因?yàn)?,又四邊形為正方形,所以,連接,所以四邊形為平行四邊形.所以.又因?yàn)槠矫?,平面,所以平?【點(diǎn)睛】本題考查空間線面的關(guān)系.線面關(guān)系的證明要緊扣判定定理,轉(zhuǎn)化為線線關(guān)系的證明.21、(1)證明見解析;(2).【解析】
(1)連交于,連,則點(diǎn)為中點(diǎn),為中點(diǎn),得,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版學(xué)校校辦工廠風(fēng)險(xiǎn)管理與承包經(jīng)營合同3篇
- 二零二五年度木材市場行情預(yù)測與分析咨詢合同4篇
- 2025年度環(huán)保材料研發(fā)與生產(chǎn)合作合同范本4篇
- 2025版旅游度假區(qū)租賃與旅游服務(wù)合作協(xié)議3篇
- 2025年度智能交通系統(tǒng)保密管理與服務(wù)合同
- 二零二五年度科技型中小企業(yè)貸款合同
- 2025年度知識產(chǎn)權(quán)授權(quán)委托書簽訂協(xié)議
- 2025年度門面出租合同終止與租賃合同終止后合同解除及違約賠償協(xié)議
- 2025年度銀行存款賬戶遠(yuǎn)程開戶服務(wù)協(xié)議
- 2025年度私人房產(chǎn)使用權(quán)轉(zhuǎn)讓與智能家居系統(tǒng)安裝合同
- 2024年全國體育專業(yè)單獨(dú)招生考試數(shù)學(xué)試卷試題真題(含答案)
- 北師大版小學(xué)三年級上冊數(shù)學(xué)第五單元《周長》測試卷(含答案)
- DB45T 1950-2019 對葉百部生產(chǎn)技術(shù)規(guī)程
- 2025屆河北省衡水市衡水中學(xué)高考仿真模擬英語試卷含解析
- 新修訂《保密法》知識考試題及答案
- 電工基礎(chǔ)知識培訓(xùn)課程
- 住宅樓安全性檢測鑒定方案
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年五年級上學(xué)期期末考試數(shù)學(xué)試題
- 市政道路及設(shè)施零星養(yǎng)護(hù)服務(wù)技術(shù)方案(技術(shù)標(biāo))
- 選擇性必修一 期末綜合測試(二)(解析版)2021-2022學(xué)年人教版(2019)高二數(shù)學(xué)選修一
- 《論語》學(xué)而篇-第一課件
評論
0/150
提交評論