版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省蘄春縣高一下數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則()A. B. C. D.2.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件3.執(zhí)行如圖所示的程序框圖,若輸出的S=88,則判斷框內(nèi)應(yīng)填入的條件是()A.k>4? B.k>5? C.k>6? D.k>7?4.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a45.若滿足,且的最小值為,則實數(shù)的值為()A. B. C. D.6.若函數(shù)則()A. B. C. D.7.某社區(qū)義工隊有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號為1至24號,再用系統(tǒng)抽樣方法抽出6人組成一個工作小組,則這個小組年齡不超過55歲的人數(shù)為()3940112551366778889600123345A.1 B.2 C.3 D.48.一個圓柱的底面直徑與高都等于球的直徑,設(shè)圓柱的側(cè)面積為,球的表面積為,則()A. B. C. D.19.記Sn為等差數(shù)列{an}的前A.a(chǎn)n=2n-5 B.a(chǎn)n=3n-1010.已知非零向量、,“函數(shù)為偶函數(shù)”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.12.向邊長為的正方形內(nèi)隨機(jī)投粒豆子,其中粒豆子落在到正方形的頂點的距離不大于的區(qū)域內(nèi)(圖中陰影區(qū)域),由此可估計的近似值為______.(保留四位有效數(shù)字)13.等比數(shù)列中,,則公比____________.14.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.15.(如下圖)在正方形中,為邊中點,若,則__________.16.如果奇函數(shù)f(x)在[3,7]上是增函數(shù)且最小值是5,那么f(x)在[-7,-3]上是_________.①減函數(shù)且最小值是-5;②減函數(shù)且最大值是-5;③增函數(shù)且最小值是-5;④增函數(shù)且最大值是-5三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:,,.(1)求、、;(2)求證:數(shù)列為等比數(shù)列,并求其通項公式;(3)求和.18.如圖,三棱柱的側(cè)面是邊長為的菱形,,且.(1)求證:;(2)若,當(dāng)二面角為直二面角時,求三棱錐的體積.19.已知.(1)求;(2)求的值.20.如果數(shù)列對任意的滿足:,則稱數(shù)列為“數(shù)列”.(1)已知數(shù)列是“數(shù)列”,設(shè),求證:數(shù)列是遞增數(shù)列,并指出與的大小關(guān)系(不需要證明);(2)已知數(shù)列是首項為,公差為的等差數(shù)列,是其前項的和,若數(shù)列是“數(shù)列”,求的取值范圍;(3)已知數(shù)列是各項均為正數(shù)的“數(shù)列”,對于取相同的正整數(shù)時,比較和的大小,并說明理由.21.已知圓以原點為圓心且與直線相切.(1)求圓的方程;(2)若直線與圓交于、兩點,過、兩點分別作直線的垂線交軸于、兩點,求線段的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:,故選A.考點:兩角和與差的正切公式.2、A【解析】
“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【點睛】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.3、B【解析】
分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S的值,條件框內(nèi)的語句決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到結(jié)果.【詳解】程序在運(yùn)行過程中各變量值變化如下:第一次循環(huán)k=2,S=2;是第二次循環(huán)k=3,S=7;是第三次循環(huán)k=4,S=18;是第四次循環(huán)k=5,S=41;是第五次循環(huán)=6,S=88;否故退出循環(huán)的條件應(yīng)為k>5?,故選B.【點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計算,直到達(dá)到輸出條件即可.4、C【解析】
在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,
在驗證時,把當(dāng)代入,左端.
故選:C.【點睛】此題主要考查數(shù)學(xué)歸納法證明等式的問題,屬于概念性問題.5、B【解析】
首先畫出滿足條件的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)取最小值找出最優(yōu)解,把最優(yōu)解點代入目標(biāo)函數(shù)即可求出的值.【詳解】畫出滿足條件的平面區(qū)域,如圖所示:,由,解得:,由得:,顯然直線過時,z最小,∴,解得:,故選B.【點睛】本題主要考查簡單的線性規(guī)劃,已知目標(biāo)函數(shù)最值求參數(shù)的問題,屬于??碱}型.6、B【解析】
首先根據(jù)題意得到,再計算即可.【詳解】……,.故選:B【點睛】本題主要考查分段函數(shù)值的求法,同時考查了指數(shù)冪的運(yùn)算,屬于簡單題.7、B【解析】
求出樣本間隔,結(jié)合莖葉圖求出年齡不超過55歲的有8人,然后進(jìn)行計算即可.【詳解】解:樣本間隔為,年齡不超過55歲的有8人,則這個小組中年齡不超過55歲的人數(shù)為人.故選:.【點睛】本題主要考查莖葉圖以及系統(tǒng)抽樣的應(yīng)用,求出樣本間隔是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】
由圓柱的側(cè)面積及球的表面積公式求解即可.【詳解】解:設(shè)圓柱的底面半徑為,則,則圓柱的側(cè)面積為,球的表面積為,則,故選:D.【點睛】本題考查了圓柱的側(cè)面積的求法,重點考查了球的表面積公式,屬基礎(chǔ)題.9、A【解析】
等差數(shù)列通項公式與前n項和公式.本題還可用排除,對B,a5=5,S4=4(-7+2)【詳解】由題知,S4=4a1+【點睛】本題主要考查等差數(shù)列通項公式與前n項和公式,滲透方程思想與數(shù)學(xué)計算等素養(yǎng).利用等差數(shù)列通項公式與前n項公式即可列出關(guān)于首項與公差的方程,解出首項與公差,在適當(dāng)計算即可做了判斷.10、C【解析】
根據(jù),求出向量的關(guān)系,再利用必要條件和充分條件的定義,即可判定,得到答案.【詳解】由題意,函數(shù),又為偶函數(shù),所以,則,即,可得,所以,若,則,所以,則,所以函數(shù)是偶函數(shù),所以“函數(shù)為偶函數(shù)”是“”的充要條件.故選C.【點睛】本題主要考查了向量的數(shù)量積的運(yùn)算,函數(shù)奇偶性的定義及其判定,以及充分條件和必要條件的判定,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用誘導(dǎo)公式,二倍角公式,余弦定理化簡即可得解.【詳解】.故答案為.【點睛】本題主要考查了誘導(dǎo)公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.12、3.1【解析】
根據(jù)已知條件求出滿足條件的正方形的面積,及到頂點的距離不大于1的區(qū)域(圖中陰影區(qū)域)的面積比值等于頻率即可求出答案.【詳解】依題意得,正方形的面積,陰影部分的面積,故落在到正方形的頂點的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的概率,隨機(jī)投10000粒豆子,其中1968粒豆子落在到正方形的頂點的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的頻率為:,即有:,解得:,故答案為3.1.【點睛】幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件的基本事件對應(yīng)的“幾何度量”(A),再求出總的基本事件對應(yīng)的“幾何度量”,最后根據(jù)求解.利用頻率約等于概率,即可求解。13、【解析】
根據(jù)題意得到:,解方程即可.【詳解】由題知:,解得:.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì),熟練掌握等比數(shù)列的性質(zhì)為解題的關(guān)鍵,屬于簡單題.14、【解析】
時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【詳解】當(dāng)時,,當(dāng)時,=,又時,不適合,所以.【點睛】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.15、【解析】∵,根據(jù)向量加法的三角形法則,得到∴λ=1,.則λ+μ=.故答案為.點睛:此題考查的是向量的基本定理及其分解,由條件知道,題目中要用和,來表示未知向量,故題目中要通過正方形的邊長和它特殊的直角,來做基底,表示出要求的向量,根據(jù)平面向量基本定理,系數(shù)具有惟一性,得到結(jié)果.16、④【解析】
由題意結(jié)合奇函數(shù)的對稱性和所給函數(shù)的性質(zhì)即可求得最終結(jié)果.【詳解】奇函數(shù)的函數(shù)圖象關(guān)于坐標(biāo)原點中心對稱,則若奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為1,那么f(x)在區(qū)間[﹣7,﹣3]上是增函數(shù)且最大值為﹣1.故答案為:④.【點睛】本題考查了奇函數(shù)的性質(zhì),函數(shù)的對稱性及其應(yīng)用等,重點考查學(xué)生對基礎(chǔ)概念的理解和計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3).【解析】
(1)直接帶入遞推公式即可(2)證明等于一個常數(shù)即可。(3)根據(jù)(2)的結(jié)果即可求出,從而求出?!驹斀狻浚?),,可得;,;(2)證明:,可得數(shù)列為公比為,首項為等比數(shù)列,即;(3)由(2)可得,.【點睛】本題主要考查了根據(jù)通項求數(shù)列中的某一項,以及證明是等比數(shù)列和求前偶數(shù)項和的問題,在這里主要用了分組求和的方法。18、(1)見解析(2)【解析】
(1)利用直線與平面垂直的判定,結(jié)合三角形全等判定,得到,再次結(jié)合三角形全等,即可.(2)法一:建立坐標(biāo)系,分別計算的法向量,結(jié)合兩向量夾角為直角,計算出的值,然后結(jié)合,即可.法二:設(shè)出OA=x,用x分別表示AB,BD,AD,結(jié)合,建立方程,計算x,結(jié)合,即可.【詳解】(1)連結(jié),交于點,連結(jié),因為側(cè)面是菱形,所以,又因為,,所以平面,而平面,所以,因為,所以,而,所以,.(2)因為,,所以,(法一)以為坐標(biāo)原點,所以直線為軸,所以直線為軸,所以直線為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,所以,,,設(shè)平面的法向量,所以令,則,,取,設(shè)平面的法向量,所以令,則,,取,依題意得,解得.所以.(法二)過作,連結(jié),由(1)知,所以且,所以是二面角的平面角,依題意得,,所以,設(shè),則,,又由,,所以由,解得,所以.【點睛】本道題考查了直線與平面垂直判定,考查了利用空間向量解決二面角問題,難度較難.19、(1)(2)【解析】
(1)根據(jù)三角函數(shù)的基本關(guān)系式,可得,再結(jié)合正切的倍角公式,即可求解;(2)由(1)知,結(jié)合三角函數(shù)的基本關(guān)系式,即可求解,得到答案.【詳解】(1)由,根據(jù)三角函數(shù)的基本關(guān)系式,可得,所以.(2)由(1)知,又由.【點睛】本題主要考查了三角函數(shù)的基本關(guān)系式和正切的倍角公式的化簡求值,其中解答中熟記三角函數(shù)的基本關(guān)系式和三角恒等變換的公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.20、(1);(2)(3),證明見解析.【解析】
(1)由新定義,結(jié)合單調(diào)性的定義可得數(shù)列是遞增數(shù)列;再根據(jù),,可得;(2)運(yùn)用新定義和等差數(shù)列的求和公式,解絕對值不等式即可得到所求范圍;(3)對一切,有.運(yùn)用數(shù)學(xué)歸納法證明,注意驗證成立;假設(shè)不等式成立,注意變形和運(yùn)用新定義,即可得證.【詳解】(1)證明:數(shù)列是“數(shù)列”,可得,即,即,可得數(shù)列是遞增數(shù)列,.(2)數(shù)列是“數(shù)列”,可得,即,可得,即有,或,或,即或或,所以.(3)數(shù)列是各項均為正數(shù)的“數(shù)列”,對于取相同的正整數(shù)時,,運(yùn)用數(shù)學(xué)歸納法證明:當(dāng)時,,,顯然即.設(shè)時,.即,可得,當(dāng)時,即證,即證,由,即證即證,由,,,,相加可得,則對一切,有.【點睛】本題考查新定義的理解和運(yùn)用,考查數(shù)列的單調(diào)性的證明和等差數(shù)列的通項公式和求和公式,以及數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具賽事購銷合同
- 永恒的諾言字
- 2024年度數(shù)據(jù)中心建設(shè)項目委托招投標(biāo)合同3篇
- 光伏電站建設(shè)合同模板
- 2024年版車輛租借協(xié)議版B版
- 紡織品交易購銷合約
- 牛奶綠色環(huán)保購銷合同
- 計算機(jī)編程軟件購銷協(xié)議
- 銀行保證合同模板
- 服務(wù)合同安裝合同范本
- 開關(guān)電源之雷擊浪涌分析之典型的雷擊測試和對策以及小技巧
- 期末練習(xí)(試題)-2024-2025學(xué)年譯林版(三起)(2024)英語三年級上冊
- 加油站消防預(yù)案和應(yīng)急預(yù)案
- 2024年秋新北師大版七年級上冊生物課件 跨學(xué)科實踐活動 活動一 栽培番茄觀察并描繪其一生的變化 活動一 栽培番茄觀察并描繪其一生的變化
- 解讀國有企業(yè)管理人員處分條例課件
- HG∕T 3792-2014 交聯(lián)型氟樹脂涂料
- DL∕T 5342-2018 110kV~750kV架空輸電線路鐵塔組立施工工藝導(dǎo)則
- 海洋工程設(shè)計委托書
- 工業(yè)機(jī)器人現(xiàn)場編程實訓(xùn)報告模板
- 國際私法(華東政法大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年華東政法大學(xué)
- 海洋學(xué)智慧樹知到期末考試答案章節(jié)答案2024年海南熱帶海洋學(xué)院
評論
0/150
提交評論