吉林省長春市德惠三中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
吉林省長春市德惠三中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
吉林省長春市德惠三中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
吉林省長春市德惠三中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
吉林省長春市德惠三中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省長春市德惠三中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣12.計算(-1)×2的結(jié)果是()A.-2 B.-1 C.1 D.23.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.104.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m5.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:26.如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.7.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.8.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°9.下列分式是最簡分式的是()A. B. C. D.10.如果,那么的值為()A.1 B.2 C. D.11.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.12.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.19二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關(guān)于x的分式方程有增根,則m的值為_____.14.化簡的結(jié)果為_____.15.如圖,⊙O的半徑為5cm,圓心O到AB的距離為3cm,則弦AB長為_____cm.16.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.17.如圖,矩形ABCD中,E為BC的中點,將△ABE沿直線AE折疊時點B落在點F處,連接FC,若∠DAF=18°,則∠DCF=_____度.18.二次函數(shù)y=(x﹣2m)2+1,當(dāng)m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進(jìn)行兩局游戲便能確定贏家的概率.20.(6分)為弘揚中華優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》、《大學(xué)》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內(nèi)容進(jìn)行誦讀比賽.小禮誦讀《論語》的概率是;(直接寫出答案)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.21.(6分)某自動化車間計劃生產(chǎn)480個零件,當(dāng)生產(chǎn)任務(wù)完成一半時,停止生產(chǎn)進(jìn)行自動化程序軟件升級,用時20分鐘,恢復(fù)生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務(wù)時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?22.(8分)先化簡,再求值:,其中a=+1.23.(8分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).24.(10分).25.(10分)如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接AE、DE.求證:DE是⊙O的切線;設(shè)△CDE的面積為S1,四邊形ABED的面積為S1.若S1=5S1,求tan∠BAC的值;在(1)的條件下,若AE=3,求⊙O的半徑長.26.(12分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點,且,過點O作OE⊥AC于點E⊙O的切線AF交OE的延長線于點F,弦AC、BD的延長線交于點G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.27.(12分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.2、A【解析】

根據(jù)兩數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數(shù)的乘法計算,解答本題的關(guān)鍵是熟練掌握有理數(shù)的乘法法則.3、B【解析】

平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是利用三角形中位線定理進(jìn)行求解.4、C【解析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結(jié)論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.5、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進(jìn)而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.6、B【解析】

以O(shè)M為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進(jìn)而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.7、C【解析】

這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.8、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.9、C【解析】解:A.,故本選項錯誤;B.,故本選項錯誤;C.,不能約分,故本選項正確;D.,故本選項錯誤.故選C.點睛:本題主要考查對分式的基本性質(zhì),約分,最簡分式等知識點的理解和掌握,能根據(jù)分式的基本性質(zhì)正確進(jìn)行約分是解答此題的關(guān)鍵.10、D【解析】

先對原分式進(jìn)行化簡,再尋找化簡結(jié)果與已知之間的關(guān)系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質(zhì)是解題的關(guān)鍵.11、B【解析】

根據(jù)幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進(jìn)行分析,即可得出答案.【詳解】左視圖是從左往右看,左側(cè)一列有2層,右側(cè)一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關(guān)鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.12、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、±【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.有增根,最簡公分母x-3=0,所以增根是x=3,把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘x-3,得x-2(x-3)=m2,∵原方程增根為x=3,∴把x=3代入整式方程,得m=±.【點睛】解決增根問題的步驟:①確定增根的值;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.14、+1【解析】

利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.15、1cm【解析】

首先根據(jù)題意畫出圖形,然后連接OA,根據(jù)垂徑定理得到OC平分AB,即AC=BC,而在Rt△OAC中,根據(jù)勾股數(shù)得到AC=4,這樣即可得到AB的長.【詳解】解:如圖,連接OA,則OA=5,OC=3,OC⊥AB,∴AC=BC,∴在Rt△OAC中,AC==4,∴AB=2AC=1.故答案為1.【點睛】本題考查垂徑定理;勾股定理.16、2﹣【解析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)圖形的對稱性分析,主要考查學(xué)生的計算能力.17、1.【解析】

由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性質(zhì)得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性質(zhì)求出∠ECF=54°,即可得出∠DCF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E為BC的中點,∴BE=CE,∴FE=CE,∴∠ECF=×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案為1.【點睛】本題考查了矩形的性質(zhì)、折疊變換的性質(zhì)、直角三角形的性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識點,求出∠ECF的度數(shù)是解題的關(guān)鍵.18、m>1【解析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質(zhì)可知在對稱軸的左側(cè)時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質(zhì),掌握當(dāng)拋物線開口向下時,在對稱軸右側(cè)y隨x的增大而減小是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1),(2)【解析】解:(1)畫樹狀圖得:∵總共有9種等可能情況,每人獲勝的情形都是3種,∴兩人獲勝的概率都是.(2)由(1)可知,一局游戲每人勝、負(fù)、和的機會均等,都為.任選其中一人的情形可畫樹狀圖得:∵總共有9種等可能情況,當(dāng)出現(xiàn)(勝,勝)或(負(fù),負(fù))這兩種情形時,贏家產(chǎn)生,∴兩局游戲能確定贏家的概率為:.(1)根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結(jié)果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案.(2)因為由(1)可知,一局游戲每人勝、負(fù)、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結(jié)果與進(jìn)行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案.20、(1);(2).【解析】

(1)利用概率公式直接計算即可;(2)列舉出所有情況,看小明和小亮誦讀兩個不同材料的情況數(shù)占總情況數(shù)的多少即可.【詳解】(1)∵誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》三種,∴小明誦讀《論語》的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9種等可能性結(jié)果,其中小明和小亮誦讀兩個不同材料結(jié)果有6種.所以小明和小亮誦讀兩個不同材料的概率=.【點睛】本題考查了用列表法或畫樹形圖發(fā)球隨機事件的概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的易錯點.21、軟件升級后每小時生產(chǎn)1個零件.【解析】分析:設(shè)軟件升級前每小時生產(chǎn)x個零件,則軟件升級后每小時生產(chǎn)(1+)x個零件,根據(jù)工作時間=工作總量÷工作效率結(jié)合軟件升級后節(jié)省的時間,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.詳解:設(shè)軟件升級前每小時生產(chǎn)x個零件,則軟件升級后每小時生產(chǎn)(1+)x個零件,根據(jù)題意得:,解得:x=60,經(jīng)檢驗,x=60是原方程的解,且符合題意,∴(1+)x=1.答:軟件升級后每小時生產(chǎn)1個零件.點睛:本題考查了分式方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出分式方程是解題的關(guān)鍵.22、【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把a的值代入計算即可求出值.【詳解】原式==,當(dāng)a=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關(guān)鍵.23、(1)坡頂?shù)降孛娴木嚯x為米;移動信號發(fā)射塔的高度約為米.【解析】

延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設(shè)AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設(shè)BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經(jīng)檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數(shù),坡角與坡角等,解決本題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.24、5﹣.【解析】

根據(jù)特殊角的三角函數(shù)值進(jìn)行計算即可.【詳解】原式==3﹣+4﹣2=5﹣.【點睛】本題考查了特殊角的三角函數(shù)值,是基礎(chǔ)題目比較簡單.25、(1)見解析;(1)tan∠BAC=;(3)⊙O的半徑=1.【解析】

(1)連接DO,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)E為BC的中點可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性質(zhì)就可以得出∠ODE=90°就可以得出結(jié)論.(1)由S1=5S1可得△ADB的面積是△CDE面積的4倍,可求得AD:CD=1:1,可得.則tan∠BAC的值可求;(3)由(1)的關(guān)系即可知,在Rt△AEB中,由勾股定理即可求AB的長,從而求⊙O的半徑.【詳解】解:(1)連接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直徑,∴∠ADB=90°,∴∠CDB=90°.∵E為BC的中點,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB為直徑的⊙O的切線,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切線;(1)∵S1=5S1∴S△ADB=1S△CDB∴∵△BDC∽△ADB∴∴DB1=AD?DC∴∴tan∠BAC==.(3)∵tan∠BAC=∴,得BC=AB∵E為BC的中點∴BE=AB∵AE=3,∴在Rt△AEB中,由勾股定理得,解得AB=4故⊙O的半徑R=AB=1.【點睛】本題考查了圓周角定理的運用,直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,切線的判定定理的運用,勾股定理的運用,相似三角形的判定和性質(zhì),解答時正確添加輔助線是關(guān)鍵.26、(1)見解析;(2).【解析】

(1)根據(jù)圓周角定理得到∠GAB=∠B,根據(jù)切線的性質(zhì)得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;(2)連接OG,根據(jù)勾股定理求出OG,證明△FAO∽△BOG,根據(jù)相似三角形的性質(zhì)列出比例式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論