2022屆上海市閔行區(qū)21校中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2022屆上海市閔行區(qū)21校中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2022屆上海市閔行區(qū)21校中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2022屆上海市閔行區(qū)21校中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2022屆上海市閔行區(qū)21校中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022屆上海市閔行區(qū)21校中考數(shù)學(xué)對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標(biāo)系中的大致圖象是()A. B. C. D.2.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°3.如圖,線段AB兩個端點的坐標(biāo)分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標(biāo)分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)4.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數(shù)關(guān)系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米5.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°6.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當(dāng)點M在y=的圖象上運動時,以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當(dāng)點A是MC的中點時,則點B是MD的中點.其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.37.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.8.下列運算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=99.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學(xué)記數(shù)法表示應(yīng)為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×10510.如圖,某計算機中有、、三個按鍵,以下是這三個按鍵的功能.(1).:將熒幕顯示的數(shù)變成它的正平方根,例如:熒幕顯示的數(shù)為49時,按下后會變成1.(2).:將熒幕顯示的數(shù)變成它的倒數(shù),例如:熒幕顯示的數(shù)為25時,按下后會變成0.2.(3).:將熒幕顯示的數(shù)變成它的平方,例如:熒幕顯示的數(shù)為6時,按下后會變成3.若熒幕顯示的數(shù)為100時,小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當(dāng)他按了第100下后熒幕顯示的數(shù)是多少()A.0.01 B.0.1 C.10 D.10011.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.2412.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點E,則k的值是()(A)33(B)34(C)35(D)36二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標(biāo)為,線段的長為8,則拋物線的對稱軸為直線________________.14.如圖,在一次數(shù)學(xué)活動課上,小明用18個棱長為1的正方體積木搭成一個幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.15.分解因式:8a3﹣8a2+2a=_____.16.如圖,點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,OA=4,則k的值為_____.17.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)18.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點B的對應(yīng)點D恰好落在BC邊上時,則CD的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形中,對角線,相交于點,且,.動點,分別從點,同時出發(fā),運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續(xù)運動,到點停止.連接,,,設(shè)的面積為(這里規(guī)定:線段是面積為0的三角形),點的運動時間為.(1)求線段的長(用含的代數(shù)式表示);(2)求時,求與之間的函數(shù)解析式,并寫出的取值范圍;(3)當(dāng)時,直接寫出的取值范圍.20.(6分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,21.(6分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。22.(8分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點C的坐標(biāo);(2)設(shè)二次函數(shù)圖象的頂點為D.①若點D與點C關(guān)于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.23.(8分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當(dāng)AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當(dāng)E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.24.(10分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.25.(10分)某車間的甲、乙兩名工人分別同時生產(chǎn)只同一型號的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關(guān)系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關(guān)系式;(3)當(dāng)兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).26.(12分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.27.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當(dāng)⊙O半徑為3,CE=2時,求BD長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點,應(yīng)在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.2、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.3、C【解析】

直接利用位似圖形的性質(zhì)得出對應(yīng)點坐標(biāo)乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標(biāo)分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標(biāo)為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標(biāo)與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.4、B【解析】

C、由二者第二次相遇的時間結(jié)合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當(dāng)時,出現(xiàn)拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據(jù)第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時亮亮到達A地,根據(jù)出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

,

出發(fā)20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【點睛】本題考查了一次函數(shù)的應(yīng)用,觀察函數(shù)圖象,逐一分析四個選項的正誤是解題的關(guān)鍵.5、C【解析】

根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關(guān)鍵是牢記平行線的性質(zhì).6、D【解析】

根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.7、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,屬于中考??碱}型.8、D【解析】

直接利用合并同類項法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關(guān)性質(zhì)是解題關(guān)鍵.9、C【解析】試題分析:28000=1.1×1.故選C.考點:科學(xué)記數(shù)法—表示較大的數(shù).10、B【解析】

根據(jù)題中的按鍵順序確定出顯示的數(shù)即可.【詳解】解:根據(jù)題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【點睛】此題考查了計算器﹣數(shù)的平方,弄清按鍵順序是解本題的關(guān)鍵.11、B【解析】過點A作AM⊥BC于點M,由題意可知當(dāng)點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關(guān)鍵.12、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數(shù)綜合題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或x=-1【解析】

由點A的坐標(biāo)及AB的長度可得出點B的坐標(biāo),由拋物線的對稱性可求出拋物線的對稱軸.【詳解】∵點A的坐標(biāo)為(-2,0),線段AB的長為8,∴點B的坐標(biāo)為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【點睛】本題考查了拋物線與x軸的交點以及二次函數(shù)的性質(zhì),由拋物線與x軸的交點坐標(biāo)找出拋物線的對稱軸是解題的關(guān)鍵.14、A,18,1【解析】

A、首先確定小明所搭幾何體所需的正方體的個數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;

B、分別得到前后面,上下面,左右面的面積,相加即可求解.【詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個無縫隙的大長方體,

∴該長方體需要小立方體4×32=36個,

∵小明用18個邊長為1的小正方體搭成了一個幾何體,

∴小亮至少還需36-18=18個小立方體,

B、表面積為:2×(8+8+7)=1.

故答案是:A,18,1.【點睛】考查了由三視圖判斷幾何體的知識,能夠確定兩人所搭幾何體的形狀是解答本題的關(guān)鍵.15、2a(2a﹣1)2【解析】

提取2a,再將剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【詳解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【點睛】本題考查了因式分解,仔細觀察題目并提取公因式是解決本題的關(guān)鍵.16、﹣4.【解析】

作AN⊥x軸于N,可設(shè)A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【詳解】解:作AN⊥x軸于N,如圖所示:∵點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,∴可設(shè)A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案為﹣4.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的圖象得交點、勾股定理、反比例函數(shù)解析式的求法;求出點A的坐標(biāo)是解決問題的關(guān)鍵.17、②③④【解析】試題解析:根據(jù)已知條件不能推出OA=OD,∴①錯誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,18、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點B的對應(yīng)點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)當(dāng)0<x≤1時,PD=1-x,當(dāng)1<x≤14時,PD=x-1.(2)y=;(3)5≤x≤9【解析】

(1)分點P在線段CD或在線段AD上兩種情形分別求解即可.

(2)分三種情形:①當(dāng)5≤x≤1時,如圖1中,根據(jù)y=S△DPB,求解即可.②當(dāng)1<x≤9時,如圖2中,根據(jù)y=S△DPB,求解即可.③9<x≤14時,如圖3中,根據(jù)y=S△APQ+S△ABQ-S△PAB計算即可.

(3)根據(jù)(2)中結(jié)論即可判斷.【詳解】解:(1)當(dāng)0<x≤1時,PD=1-x,

當(dāng)1<x≤14時,PD=x-1.

(2)①當(dāng)5≤x≤1時,如圖1中,

∵四邊形ABCD是矩形,

∴OD=OB,

∴y=S△DPB=×?(1-x)?6=(1-x)=12-x.

②當(dāng)1<x≤9時,如圖2中,y=S△DPB=×(x-1)×1=2x-2.

③9<x≤14時,如圖3中,y=S△APQ+S△ABQ-S△PAB=?(14-x)?(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.

綜上所述,y=.

(3)由(2)可知:當(dāng)5≤x≤9時,y=S△BDP.【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是理解題意,學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.20、(1)見解析;(2)EC=1.【解析】

(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質(zhì)可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結(jié)論;(2)根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質(zhì)、余角的性質(zhì)、對頂角的性質(zhì)等知識點,關(guān)鍵根據(jù)相關(guān)的性質(zhì)定理,通過等量代換推出∠F=∠FDA,即可推出結(jié)論.21、見解析【解析】

在ABC和EAD中已經(jīng)有一條邊和一個角分別相等,根據(jù)平行的性質(zhì)和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【點睛】本題主要考查了平行四邊形的基本性質(zhì)和全等三角形的判定及性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標(biāo);(1)①根據(jù)點D與點C關(guān)于x軸對稱即可得點D的坐標(biāo),并且求得CD的長,設(shè)A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點A的坐標(biāo),把A.D的坐標(biāo)代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達式.②設(shè)A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點的坐標(biāo),分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標(biāo);第二種情況,若a<0,則點D在點C上方,求點D的坐標(biāo),分別把A、D的坐標(biāo)代入y=ax1-4ax+c即可求得函數(shù)表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對稱軸為直線x=1.當(dāng)x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關(guān)于x軸對稱,∴D(1,-32設(shè)A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設(shè)A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數(shù)與一次函數(shù)的綜合題.23、(1)證明見解析;(1)2【解析】分析:(1)根據(jù)角平分線的定義可得∠1=∠1,再根據(jù)等角的余角相等求出∠BEF=∠AFD,然后根據(jù)對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據(jù)中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點睛:本題考查了直角三角形的性質(zhì),勾股定理的應(yīng)用,等角的余角相等的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.24、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.【點睛】本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計算,全等三角形的性質(zhì)和判定,第三問構(gòu)造全等三角形找到與∠BMF相等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論