重慶涪陵區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
重慶涪陵區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
重慶涪陵區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
重慶涪陵區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
重慶涪陵區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶涪陵區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處2.已知關于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.43.如圖所示,若將△ABO繞點O順時針旋轉180°后得到△A1B1O,則A點的對應點A1點的坐標是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)4.如圖,?ABCD對角線AC與BD交于點O,且AD=3,AB=5,在AB延長線上取一點E,使BE=AB,連接OE交BC于F,則BF的長為()A. B. C. D.15.下列實數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π6.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.7.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為()A. B. C. D.8.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.9.甲、乙兩超市在1月至8月間的盈利情況統(tǒng)計圖如圖所示,下面結論不正確的是()A.甲超市的利潤逐月減少B.乙超市的利潤在1月至4月間逐月增加C.8月份兩家超市利潤相同D.乙超市在9月份的利潤必超過甲超市10.如圖,將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°二、填空題(本大題共6個小題,每小題3分,共18分)11.若式子有意義,則實數(shù)x的取值范圍是_______.12.滿足的整數(shù)x的值是_____.13.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點,與雙曲線y=(x>0)交于第一象限點C,若BC=2AB,則S△AOB=________.14.分解因式:4a3b﹣ab=_____.15.如圖,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F(xiàn)分別是AB,CD的中點,則EF=_____.16.若x2+kx+81是完全平方式,則k的值應是________.三、解答題(共8題,共72分)17.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求18.(8分)列方程解應用題:某市今年進行水網升級,1月1日起調整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15元,而今年5月的水費則是30元.已知小麗家今年5月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.19.(8分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).20.(8分)車輛經過潤揚大橋收費站時,4個收費通道A.B、C、D中,可隨機選擇其中的一個通過.一輛車經過此收費站時,選擇A通道通過的概率是;求兩輛車經過此收費站時,選擇不同通道通過的概率.21.(8分)如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、點B、點C均落在格點上.(I)計算△ABC的邊AC的長為_____.(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).22.(10分)如圖,某反比例函數(shù)圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.23.(12分)小方與同學一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進10米到達點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.(1)求AD的長.(2)求樹長AB.24.在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質;這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.2、C【解析】

先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.3、A【解析】

由題意可知,點A與點A1關于原點成中心對稱,根據圖象確定點A的坐標,即可求得點A1的坐標.【詳解】由題意可知,點A與點A1關于原點成中心對稱,∵點A的坐標是(﹣3,2),∴點A關于點O的對稱點A'點的坐標是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質及關于原點對稱點的坐標的特征,熟知中心對稱的性質及關于原點對稱點的坐標的特征是解決問題的關鍵.4、A【解析】

首先作輔助線:取AB的中點M,連接OM,由平行四邊形的性質與三角形中位線的性質,即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對應邊成比例即可求得BF的值.【詳解】取AB的中點M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點睛】此題考查了平行四邊形的性質、相似三角形的判定與性質等知識.解此題的關鍵是準確作出輔助線,合理應用數(shù)形結合思想解題.5、D【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、﹣5是整數(shù),是有理數(shù),選項錯誤;B、是分數(shù),是有理數(shù),選項錯誤;C、0是整數(shù),是有理數(shù),選項錯誤;D、π是無理數(shù),選項正確.故選D.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).6、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.

故選B.7、A【解析】

根據等腰直角三角形的性質可得出2S2=S1,根據數(shù)的變化找出變化規(guī)律“Sn=()n﹣2”,依此規(guī)律即可得出結論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規(guī)律“Sn=()n﹣2”.8、C【解析】

結合圓錐的平面展開圖的特征,側面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.9、D【解析】【分析】根據折線圖中各月的具體數(shù)據對四個選項逐一分析可得.【詳解】A、甲超市的利潤逐月減少,此選項正確,不符合題意;B、乙超市的利潤在1月至4月間逐月增加,此選項正確,不符合題意;C、8月份兩家超市利潤相同,此選項正確,不符合題意;D、乙超市在9月份的利潤不一定超過甲超市,此選項錯誤,符合題意,故選D.【點睛】本題主要考查折線統(tǒng)計圖,折線圖是用一個單位表示一定的數(shù)量,根據數(shù)量的多少描出各點,然后把各點用線段依次連接起來.以折線的上升或下降來表示統(tǒng)計數(shù)量增減變化.10、B【解析】

根據圖形旋轉的性質得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉的性質,等腰三角形和直角三角形的性質,掌握等腰三角形和直角三角形的性質定理,是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≤2且x≠1【解析】

根據被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).12、3,1【解析】

直接得出2<<3,1<<5,進而得出答案.【詳解】解:∵2<<3,1<<5,∴的整數(shù)x的值是:3,1.故答案為:3,1.【點睛】此題主要考查了估算無理數(shù)的大小,正確得出接近的有理數(shù)是解題關鍵.13、【解析】

根據題意可設出點C的坐標,從而得到OA和OB的長,進而得到△AOB的面積即可.【詳解】∵直接y=kx+b與x軸、y軸交A、B兩點,與雙曲線y=交于第一象限點C,若BC=2AB,設點C的坐標為(c,)∴OA=0.5c,OB==,∴S△AOB===【點睛】此題主要考查反比例函數(shù)的圖像,解題的關鍵是根據題意設出C點坐標進行求解.14、ab(2a+1)(2a-1)【解析】

先提取公因式再用公式法進行因式分解即可.【詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【點睛】此題主要考查因式分解單項式,解題的關鍵是熟知因式分解的方法.15、3【解析】

延長AC和BD,交于M點,M、E、F三點共線,EF=MF-ME.【詳解】延長AC和BD,交于M點,M、E、F三點共線,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.【點睛】本題考查了直角三角形斜邊中線的性質.16、±1【解析】試題分析:利用完全平方公式的結構特征判斷即可確定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案為±1.考點:完全平方式.三、解答題(共8題,共72分)17、(1)證明見解析;(2)EH=【解析】

(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.18、2.4元/米【解析】

利用總水費÷單價=用水量,結合小麗家今年5月的用水量比去年12月的用水量多5m3,進而得出等式即可.【詳解】解:設去年用水的價格每立方米元,則今年用水價格為每立方米元由題意列方程得:解得經檢驗,是原方程的解(元/立方米)答:今年居民用水的價格為每立方米元.【點睛】此題主要考查了分式方程的應用,正確表示出用水量是解題關鍵.19、C點到地面AD的距離為:(2+2)m.【解析】

直接構造直角三角形,再利用銳角三角函數(shù)關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數(shù)是解題的關鍵.20、(1);(2).【解析】試題分析:(1)根據概率公式即可得到結論;(2)畫出樹狀圖即可得到結論.試題解析:(1)選擇A通道通過的概率=,故答案為;(2)設兩輛車為甲,乙,如圖,兩輛車經過此收費站時,會有16種可能的結果,其中選擇不同通道通過的有12種結果,∴選擇不同通道通過的概率==.21、作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小【解析】

(1)利用勾股定理計算即可;(2)作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最?。驹斀狻拷猓海?)AC==.故答案為.(2)作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.

故答案為作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.【點睛】本題考查作圖-應用與設計,勾股定理,軸對稱-最短問題,垂線段最短等知識,解題的關鍵是學會利用軸對稱,根據垂線段最短解決最短問題,屬于中考??碱}型.22、(1)y;(2)yx+1.【解析】

(1)把A的坐標代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關于b的方程,求得b的值,進而求得a的值,根據待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論