![視覺數(shù)學(xué)課程 III Blackline Masters_第1頁](http://file4.renrendoc.com/view3/M02/13/06/wKhkFmZVe4OAcqhgAAEmq7kxEtA051.jpg)
![視覺數(shù)學(xué)課程 III Blackline Masters_第2頁](http://file4.renrendoc.com/view3/M02/13/06/wKhkFmZVe4OAcqhgAAEmq7kxEtA0512.jpg)
![視覺數(shù)學(xué)課程 III Blackline Masters_第3頁](http://file4.renrendoc.com/view3/M02/13/06/wKhkFmZVe4OAcqhgAAEmq7kxEtA0513.jpg)
![視覺數(shù)學(xué)課程 III Blackline Masters_第4頁](http://file4.renrendoc.com/view3/M02/13/06/wKhkFmZVe4OAcqhgAAEmq7kxEtA0514.jpg)
![視覺數(shù)學(xué)課程 III Blackline Masters_第5頁](http://file4.renrendoc.com/view3/M02/13/06/wKhkFmZVe4OAcqhgAAEmq7kxEtA0515.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
mathalivey
VISUALMATHEMATICSCOURSEIIIBLACKLINEMASTERS
Thispacketcontainsonecopyofeach
displaymasterandstudentactivitypage.
MathAlive!
VisualMathematics,CourseIII
byLindaCooperForemanandAlbertB.BennettJr.
BlacklineMasters
Copyright?1998TheMathLearningCenter,POBox12929,Salem,Oregon97309.Tel.503370-8130.Allrightsreserved.
ProducedfordigitaldistributionNovember2016.
TheMathLearningCentergrantspermissiontoclassroomteacherstoreproduceblacklinemasters,includingthoseinthisdocument,inappropriatequantitiesfortheirclassroomuse.
Thisprojectwassupported,inpart,bytheNationalScienceFoundationGrantESI-9452851.OpinionsexpressedarethoseoftheauthorsandnotnecessarilythoseoftheFoundation.
PreparedforpublicationonMacintoshDesktopPublishingsystem.PrintedintheUnitedStatesofAmerica.
DIGITAL2016
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
BlacklineMasters
LESSON1ConnectorMasterA
ConnectorMasterBConnectorMasterCConnectorMasterDFocusMasterA
FocusStudentActivity1.1
FocusStudentActivity1.2
Follow-upStudentActivity1.3
LESSON2FocusMasterA
FocusMasterBFocusMasterCFocusMasterDFocusMasterEFocusMasterFFocusMasterGFocusMasterHFocusMasterIFocusMasterJ
FocusStudentActivity2.1
FocusStudentActivity2.2
FocusStudentActivity2.3
Follow-upStudentActivity2.4
LESSON3ConnectorMasterA
ConnectorMasterBFocusMasterA
FocusMasterBFocusMasterCFocusMasterD
FocusStudentActivity3.1
FocusStudentActivity3.2
FocusStudentActivity3.3
FocusStudentActivity3.4
Follow-upStudentActivity3.5
LESSON4ConnectorStudentActivity4.1
FocusMasterAFocusMasterBFocusMasterC
FocusStudentActivity4.2(optional)Follow-upStudentActivity4.3
LESSON5ConnectorMasterA(optional)
ConnectorMasterBConnectorMasterCConnectorMasterDFocusMasterA
FocusMasterBFocusMasterCFocusMasterD
FocusStudentActivity5.1
Follow-upStudentActivity5.2
Copies/Transparencies
1pergroup,1transp.
1pergroup,1transp.
1pergroup,1transp.
2perstudent,2transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1perstudent,1transp.
1perstudent,1transp.
2perstudent,1transp.
1transp.
1transp.
1perstudent,2transp.
1perstudent,2transp.
1perstudent,2transp.
1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1pergroup,1transp.
1perstudent,1transp.
1transp.
4pertwostudents,1transp.
1perstudent
1pertwostudents,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1perstudent
1transp.
1transp.
1pertwostudents,1transp.
1perstudent
1perstudent
1perteacher
1pertwostudents,1transp.
1perstudent,1transp.
1transp.
1transp.
1transp.
1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
.
.
.
.
.
.
MathAlive!VisualMathematics,CourseIII/vii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
BlacklineMasters(continued)
LESSON6ConnectorMasterA
FocusMasterAFocusMasterBFocusMasterC
FocusStudentActivity6.1
FocusStudentActivity6.2
FocusStudentActivity6.3
FocusStudentActivity6.4
FocusStudentActivity6.5
Follow-upStudentActivity6.6
LESSON7ConnectorMasterA
FocusMasterAFocusMasterBFocusMasterCFocusMasterDFocusMasterE
FocusStudentActivity7.1
Follow-upStudentActivity7.2
LESSON8ConnectorMasterA
ConnectorMasterBConnectorMasterCConnectorMasterD
ConnectorStudentActivity8.1FocusMasterA
FocusMasterBFocusMasterCFocusMasterD
FocusStudentActivity8.2
Follow-upStudentActivity8.3
LESSON9ConnectorMasterA
ConnectorMasterBConnectorMasterC
ConnectorStudentActivity9.1FocusMasterA
FocusMasterBFocusMasterCFocusMasterDFocusMasterE
FocusStudentActivity9.2
FocusStudentActivity9.3
Follow-upStudentActivity9.4
Copies/Transparencies
1pergroup,1transp.
2perstudent,1transp.
1pergroup,1transp.
1pergroup,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1transp.
1perstudent,1transp.
1pergroup,1transp.
1pergroup,1transp.
1transp.
1transp.
1perstudent,1transp.
1perstudent
2perstudent,1pergroup,and1transp.
1pergroup,1transp.
1pergroup,1transp.
1pergroup,1transp.
1pergroup,1transp.
1transp.
1transp.
1pertwostudents,1transp.
1transp.
1pertwostudents,1transp.
1perstudent
1pertwostudents,1transp.
1pertwostudents,1transp.
1pertwostudents,1transp.
1perstudent,1transp.
1pergroup,1transp.
1transp.
1transp.
1pergroup,1transp.
2perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
viii/MathAlive!VisualMathematics,CourseIII
.
.
.
.
.
BlacklineMasters(continued)
.
.
.
.
Copies/Transparencies
.
1transp.
1transp.
1pertwostudents,1transp.
1transp.
1pertwostudents,1transp.
1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1transp.
1perstudent,1transp.
1perstudent,1transp.
1transp.
1transp.
1transp.
1pergroup,1transp.
1transp.
1transp.
1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1pergroup,1transp.
1perstudent
1pertwostudents,1transp.
1pergroup,1transp.
1transp.
1pergroup,1transp.
1perstudent,1transp.
1pergroup,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1transp.
1transp.
1pertwostudents,1transp.
1pertwostudents,1transp.
1transp.
1transp.
1pertwostudents,1transp.
1perstudent
LESSON
10
.
.
.
ConnectorMasterAFocusMasterA
.
.
.
.
.
.
.
.
FocusMasterBFocusMasterCFocusMasterDFocusMasterE
.
.
FocusStudentActivity10.1
.
.
FocusStudentActivity10.2
.
.
.
FocusStudentActivity10.3
.
.
FocusStudentActivity10.4
.
.
Follow-upStudentActivity10.5
.
.
.
LESSON
11
.
ConnectorMasterA
.
.
.
.
ConnectorStudentActivity11.1ConnectorStudentActivity11.2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
FocusMasterAFocusMasterBFocusMasterCFocusMasterDFocusMasterEFocusMasterFFocusMasterG
.
.
.
FocusStudentActivity11.3
.
.
FocusStudentActivity11.4
.
.
FocusStudentActivity11.5
.
.
FocusStudentActivity11.6
.
.
FocusStudentActivity11.7
.
.
Follow-upStudentActivity11.8
.
.
.
LESSON
12
.
ConnectorStudentActivity12.1
.
.
.
.
.
.
.
.
.
.
FocusMasterAFocusMasterBFocusMasterCFocusMasterDFocusMasterE
.
.
.
FocusStudentActivity12.2
.
.
FocusStudentActivity12.3
.
.
FocusStudentActivity12.4
.
.
Follow-upStudentActivity12.5
.
.
.
LESSON
13
.
.
.
ConnectorMasterAFocusMasterA
.
.
.
.
.
.
.
.
.
.
FocusMasterBFocusMasterCFocusMasterDFocusMasterEFocusMasterF
.
.
.
Follow-upStudentActivity13.1
.
.
.
.
.
.
MathAlive!VisualMathematics,CourseIII/ix
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
BlacklineMasters(continued)
LESSON
14
FocusMasterAFocusMasterBFocusMasterCFocusMasterD
FocusStudentActivity14.1
FocusStudentActivity14.2
Follow-upStudentActivity14.3
LESSON
15
ConnectorStudentActivity15.1
FocusMasterAFocusMasterBFocusMasterCFocusMasterD
FocusStudentActivity15.2
FocusStudentActivity15.3
FocusStudentActivity15.4
FocusStudentActivity15.5
FocusStudentActivity15.6
FocusStudentActivity15.7
Follow-upStudentActivity15.8
LESSON
16
ConnectorMasterAConnectorMasterBConnectorMasterC
ConnectorStudentActivity16.1FocusStudentActivity16.2
FocusStudentActivity16.3
FocusStudentActivity16.4
Follow-upStudentActivity16.5
LESSON
17
ConnectorMasterAConnectorMasterB
ConnectorStudentActivity17.1
FocusMasterAFocusMasterBFocusMasterC
FocusStudentActivity17.2
FocusStudentActivity17.3
Follow-upStudentActivity17.4
Copies/Transparencies
1transp.
1pergroup,1transp.
1pergroup,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1perstudent,1transp.
1transp.
1transp.
1perstudent,1transp.
1perstudent,1transp.
1pergroup,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1transp.
1transp.
1transp.
1pertwostudents,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent,1transp.
1perstudent
1perstudent,1transp.
1perstudent,1transp.
1pergroup,1transp.
1transp.
1perstudent,1transp.
1transp.
1pergroup,1transp.
1pergroup,1transp.
1perstudent
x/MathAlive!VisualMathematics,CourseIII
ExploringSymmetryLesson1
ConnectorMasterA
ROTATIONS/TURNS
a)Completethisprocedure:
?Positionyournotecardsothatitfitsinitsframewithnogapsoroverlaps.
?Markapointanywhereonyourcardwithadot,andlabelthispointP.
?PlaceapencilpointonyourpointPandholdthepencilfirmlyinaverticalpositionatP.
?RotatethecardaboutPuntilthecardfitsbackintoitsframewithnogapsoroverlaps.
b)HowmanydifferentrotationsofthecardaboutyourpointParepossiblesothatthecardfitsbackinits
framewithnogapsoroverlaps?Assumethatrotationsaredifferentiftheyresultindifferentplacementsof
thecardinitsframe.
c)Ifonlya360。(or0。)rotationaboutyourpointP
bringsthecardbackintoitsframe,findanotherposi-tionforPonthecardsothatmorethanonedifferentrotationaboutthispointispossible.Whatarethemea-suresoftherotationsandhowdidyoudetermine
them?
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson1ExploringSymmetry
ConnectorMasterB
REFLECTIONS/FLIPS
Figure1belowshowstheframeforarectangularcardwithalineldrawnacrosstheframe.InFigure2,the
cardhasbeenplacedintheframe.Figure3showstheresultofreflecting,orflipping,thecardoverlinel.No-ticethatafterthereflectionoverlinel,thecarddoesnotfitbackinitsframe.
l
Figure1
l
A
D
B
C
Figure2
l
Figure3
Determineallthedifferentpossibleplacementsoflinelsothatwhenyouflipyourcardonceoverl,thecardfitsbackinitsframewithnogapsoroverlaps.
HINT:Asaguideforflippingthecardaboutaline,youcouldtapeapencilorcoffeestirrertothecardalongthepathoflinel,as
shownbelow.Thenkeepthepencilorcoffeestirreralignedwithlinelasyouflipthecard.
..
l
A
D
C
B
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
ExploringSymmetryLesson1
ConnectorMasterC
a)Discussyourgroup’sideasandquestionsaboutthemeaningsofthefollowingterms.Talkaboutways
thesetermsrelatetoanonsquarerectanglesuchasyournotecard.Recordimportantideasandquestionstosharewiththeclass.
i)reflectionalsymmetry
ii)axisofreflection(alsocalledlineofreflection)
iii)rotationalsymmetry
iv)centerofrotation
v)frametestforsymmetry
b)Ifashapeissymmetrical,itsorderofsymmetryisthenumberofdifferentpositionsfortheshapeinitsframe,wheredifferentmeansthesidesoftheshapeandthesidesoftheframematchindistinctlydifferentways.Developaconvincingargumentthatyourrect-angularnotecardhassymmetryoforderfour.
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
ConnectorMasterD
a)
c)
b)
d)
f)
e)
g)
i)
h)
j)
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
FocusMasterA
OurGoalsasMathematicians
Weareacommunityofmathematicians
workingtogethertodevelopour:
a)visualthinking,
b)conceptunderstanding,
c)reasoningandproblemsolving,
d)abilitytoinventproceduresandmakegeneralizations,
e)mathematicalcommunication,
f)opennesstonewideasandvariedapproaches,
g)self-esteemandself-confidence,
h)joyinlearninganddoingmathematics.
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
FocusStudentActivity1.1
NAMEDATE
1Foreachshapebelow,determinementallyhowmanywaysonesquareofthegridcanbeaddedtotheshapetomakeitsymmetrical.Assumenogapsoroverlapsandthatsquaresmeetedge-to-edge.
A
B
C
D
凸
F
2Foreachshapebelow,determinementallyhowmanywaysonetriangleofthegridcanbeaddedtotheshapetomakeitsymmetri-cal.Assumenogapsoroverlapsandthattrianglesmeetedge-to-
edge.
/A/
/B
C
D
F\
(Continuedonback.)
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson1ExploringSymmetry
FocusStudentActivity(cont.)
3Createashapethatismadeofsquaresjoinededge-to-edge(nooverlaps)andhasexactly3waysofaddingoneadditionalsquaretomaketheshapesymmetrical.
4Createashapethatismadeoftrianglesjoinededge-to-edge(nooverlaps)andhasexactly4waysofaddingoneadditionaltriangletomaketheshapesymmetrical.
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
ExploringSymmetryLesson1
FocusStudentActivity1.2
NAMEDATE
Writeawell-organized,sequentialsummaryofyourinvestigationofoneofProblems1or2.Includethefollowinginyoursummary:
?astatementoftheproblemyouinvestigate
?thestepsofwhatyoudo,includinganyfalsestartsanddead-ends
?relationshipsyounotice(smalldetailsareimportant)
?questionsthatoccurtoyou
?placesyougetstuckandthingsyoudotogetunstuck
?yourAHA!sandimportantdiscoveries
?conjecturesthatyoumake—includewhatsparkedandwaysyoutestedeachconjecture
?evidencetosupportyourconclusions.
1Anonsquarerectangleandanonsquarerhombuseachhave2
reflectionalsymmetries.However,the2linesofsymmetryareof2differenttypes—thelinesofsymmetryofarectangleconnectthe
midpointsofoppositesidesandthelinesofsymmetryofarhombusconnectoppositevertices.Investigateotherpolygonswithexactly2linesofsymmetryofthese2types.Generalize,ifpossible.
2What,ifany,istheminimumnumberofsidesforapolygon
with3rotationalsymmetriesandnoreflectionalsymmetry?What,ifany,isthemaximumnumberofsides?What,ifany,isthemini-mumnumberofsidesforpolygonswith4rotationalsymmetries
andnoreflectionalsymmetries?5rotationalandnoreflectionalsymmetries?nrotationalandnoreflectionalsymmetries?Investi-gate.
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
ExploringSymmetryLesson1
Follow-upStudentActivity1.3
NAMEDATE
1Traceandcutoutacopyofeachoftheaboveregularpolygons.Usethecopiesandoriginalpolygons,butnomeasuringtools(norulers,protractors,etc.),tohelpyoucompletethefollowingchart:
No.ofdifferent
positionsinframe
No.ofreflectionalsymmetries
No.ofrotationalsymmetries
Measuresofallanglesofrotation
Measureofeachinteriorangle*
*Interioranglesaretheangles“inside”thepolygonandareformedbyintersectionsofthesidesofthepolygon.
Completethefollowingproblemsonseparatepaper.BesuretowriteaboutanyAHA!s,conjectures,orgeneralizationsthatyoumake.
2Explainthemethodsthatyouusedtodeterminetheanglesofrotationandtheinterioranglemeasuresforthechartabove.Re-member,noprotractors.
3LabelthelastcolumnofthechartinProblem1“Regularn-gon”andthencompletethatcolumn.Foreachexpressionthatyouwriteinthelastcolumn,drawadiagram(onaseparatesheet)toshow
“why”theexpressioniscorrect.
(Continuedonback.)
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson1ExploringSymmetry
Follow-upStudentActivity(cont.)
4Discussthesymmetriesofacircle.Explainyourreasoning.
5Locatearesourcethatshowsflagsofthecountriesoftheworld.Foreachofthefollowing,ifpossible,sketchandcoloracopyofadifferentflag(labeleachflagbyitscountry’sname)andciteyour
resource.
a)rotationalsymmetrybutnoreflectionalsymmetry,
b)reflectionalsymmetryacrossahorizontalaxisonly,
c)nosymmetry,
d)bothrotationalandreflectionalsymmetry,
e)180。rotationalsymmetry.
6Sortandclassifythecapitallettersofthealphabetaccordingtotheirtypesofsymmetry.
7Attachpicturesof2differentcompanylogosthathavedifferenttypesofsymmetry.Describethesymmetryofeachlogo.
8Createyourpersonallogosothatithassymmetry.Recordtheorderofsymmetryforyourlogo,showthelocationofitsline(s)of
symmetry,and/orrecordthemeasuresofitsrotationalsymmetries.
9Jamaalmadeconjecturesa)andb)below.Determinewhether
youthinkeachconjectureisalways/sometimes/nevertrue.Give
evidencetoshowhowyoudecidedandtoshowwhyyourconclu-sioniscorrect.Ifyouthinkaconjectureisnottrue,edititsothatitistrue.
Ifashapehasexactly2axesofreflection,then
a)thoseaxesmustbeatrightanglestoeachother.
b)theshapealsomusthave2rotationalsymmetries.
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
IntroductiontoIsometriesLesson2
FocusMasterA
Investigatewaystouseslides,flips,and/orturnstomoveSquareFexactlyontoSquareD.Usewordsand/ormarkdiagramstoexplainthemovements
F
thatyouuse.
D
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson2IntroductiontoIsometries
FocusMasterB
F
D
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
IntroductiontoIsometriesLesson2
FocusMasterC
2
A
1
3
5
4
8
6
7
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson2IntroductiontoIsometries
FocusMasterD
PartI
ItispossibletomoveShapeAdirectlytoseveralofthenumberedpositionsusingexactlyoneoftheseisometriesonlyonce:translation,reflection,orrota-tion.Findeachpositionforwhichthisispossible,
andtellthesinglemotionthatmovesShapeAtothatposition.
PartII
DescribewaystomoveShapeAfromitsstarting
positiontoeachnumberedpositionusingacombi-nationofexactlytworeflections,rotations,and/ortranslations.Note:combinationsofmorethanonetypeofmotionareallowedaslongasnomorethantwomotionsareused.
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
IntroductiontoIsometriesLesson2
FocusMasterE
FriezeA
FriezeB
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson2IntroductiontoIsometries
FocusMasterF
FriezeA
FriezeB
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
IntroductiontoIsometriesLesson2
FocusMasterG
FriezeA
FriezeB
FriezeC
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson2IntroductiontoIsometries
FocusMasterH
FriezeA
FriezeB
FriezeC
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
IntroductiontoIsometriesLesson2
FocusMasterI
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson2IntroductiontoIsometries
FocusMasterJ
BlacklineMasters,MA!CourseIII?1998,TheMathLearningCenter
IntroductiontoIsometriesLesson2
FocusStudentActivity2.1
NAMEDATE
1Shownbelowareseveralpairsofcongruentshapes.Investigate
waystouseoneormoretranslations,reflections,rotations,orcom-binationsofthem,tomoveeachfirstshapeexactlyontothesecond.Foreachpairofshapes,writeanexplanationinwordsonlyofyour“favorite”motionorcombinationofmotions;explaininenough
detailthatareaderwouldbeabletoduplicateyourmotionswithoutadditionalinformation.
a)
b)
c)
d)
e)
2Challenge.Eachmotionorcombinationofmotionsthatyou
determinedforProblem1producesamappingofthefirstshape(thepre-image)exactlyontothesecond(theimage).Howmanydifferentmappingsarethereforeachofa)-e),ifdifferentmeansthesidesofthepre-imageandthesidesoftheimagematchindistinctlydiffer-entways.
3Recordyour“Iwonder…”statements,conjectures,orconclu-sions.
?1998,TheMathLearningCenterBlacklineMasters,MA!CourseIII
Lesson2IntroductiontoIsometries
FocusStudentActivity2.2
NAMEDATE
1Shownattherightare2congruentsquares.Determinewaystouseexactlyoneisometry(translation,reflection,rotation,orglidereflection)tomoveSquareFexactlyontoSquareD.
2RepeatProblem1forthe2equilateraltrianglesshownhere:
3SketchthereflectedimageofShapeAacrosslinem.Nexttoyoursketchwriteseveralmathematicalobservationsabout
relationshipsyounotice.ThenexplainhowyouverifiedthattheimageisareflectionofShapeAacrosslinem.
4Challenge.DevelopamethodofaccuratelyreflectingShapeBacrosslinen.Showanddescribeyourmethodoflocatingthe
reflectedimageofShapeBandtellhowyouverifiedthatyourmethodwascorrect.Canyougeneralize?
F
D
\m
A
\n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年調(diào)脂抗動脈粥樣硬化藥項目提案報告模范
- 2025年輸注延長管項目申請報告模板
- 2025年衛(wèi)生巾供應(yīng)合同格式
- 2025年加工服務(wù)協(xié)作協(xié)議模板
- 2025年合作研發(fā)新范本協(xié)議書
- 2025年個人房產(chǎn)購買協(xié)議標準文本
- 2025年農(nóng)村住宅用地互易協(xié)議標準化
- 2025年電氣安裝工程策劃合作框架協(xié)議范本提供
- 2025年修理廠技術(shù)師傅指導(dǎo)學(xué)徒合同
- 2025年信用卡消費抵押貸款協(xié)議書
- 中能億安煤礦地質(zhì)環(huán)境保護與土地復(fù)墾方案
- 血液透析水處理系統(tǒng)演示
- 通信原理 (完整)
- TSSX 007-2023 植物油生育酚及生育三烯酚含量測定反相高效液相色譜法
- 附件:中鐵建工集團項目精細化管理流程體系文件
- 三年級下冊勞動教案
- 3宮頸癌的淋巴結(jié)引流
- 兩篇古典英文版成語故事守株待兔
- YY/T 0216-1995制藥機械產(chǎn)品型號編制方法
- YS/T 649-2007銅及銅合金擠制棒
- JJG 1044-2008卡爾·費休庫侖法微量水分測定儀
評論
0/150
提交評論