lecture-16得克薩斯生態(tài)學(xué)課件_第1頁
lecture-16得克薩斯生態(tài)學(xué)課件_第2頁
lecture-16得克薩斯生態(tài)學(xué)課件_第3頁
lecture-16得克薩斯生態(tài)學(xué)課件_第4頁
lecture-16得克薩斯生態(tài)學(xué)課件_第5頁
已閱讀5頁,還剩65頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PopulationGrowthandLimits(Ch.52)Populationgrowth:(Pg.1158) Whatispopulationgrowth?Populationgrowth:(Pg.1158)Whatispopulationgrowth? Thechangeinthenumberofindividuals inapopulationthroughtime.Populationgrowth:(Pg.1158)Twomajorfactorsthataffectpopulationgrowth: 1)Birthrates 2)DeathratesDescribingPopulationGrowthwithMathematicalModels(Pg.1158-1163)DescribingPopulationGrowthwithMathematicalModels(Pg.1158-1163)Weconsiderchangesinpopulationsizeover time-therefore,therehastobeatimeinterval2)Forsimplicity,wewillassumeimmigrationandemigrationareequal3)BirthratesanddeathratesareourvariablesSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalN=PopulationSize

N=changeinpopulation sizet=time

t=timeinterval (appropriatetolifespan andgenerationtimeof species)changeSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalRewriteVerbalmodelas,N/t=B-D B=absolute D=absolute #ofbirths #ofdeaths intimeintervalintime intervalN/t=B-DB=bNwhereb=thenumberofoffspring producedperyearbyan averagememberofthe population =(theannualpercapitabirthrate)Absolute#ofbirthsPopulationsizeN/t=B-DB=bNEx. 1)Ifpopulationsize=1000 2)thispopulationexperiences34births/year Whatisthepercapitabirthrate?

B=bNEx. 1)Ifpopulationsize=1000 2)thispopulationexperiences34births/yearPlugintoequation: B=bN

34=(b)1000 34/1000=b

b=0.034percapita birthrateN/t=B-D

IfB=bN,

WhatdoesDequal?

N/t=B-DB=bN WhatdoesDequal? D=dN

wheredisthepercapita deathrateAbsolute#ofdeathsN/t=B-DGivenB=bN andD=dNWecanwrite…N/t=bN -dN

N/t=B-DGivenB=bN andD=dNWecanwrite…N/t=bN -dN

Howcouldwesimplifythisexpression?

N/t=B-DN/t=bN -dN

Howcouldwesimplifythisexpression?

PullNout,N(b–d)

N/t=bN -dNPullNout,N(b–d) r=b-d

r=differenceinpercapita birthanddeathrates

(r=percapitapopulationgrowth)Ecologistsareinterestedinoverallchangesinpopulationsize,so“r”isusedinmodelsr=b-d r=differenceinpercapita birthanddeathrates (r=percapitapopulationgrowth)“r”tellsuswhetherapopulationisgrowing(+values)ordeclining(-values)Zeropopulationgrowth(ZPG)iswhenb=d.Rewritepopulationgrowthequationas…N/t=bN -dNN/t=

N(b–d) usingr=b–dN/t=rNN/t=rNEcologistsusuallyusethedifferentialcalculusexpression

dN/dt=rNwhichexpressesinstantaneousgrowthrates=growthrateatanygivenpointintime.Draw–slopedN/dt=rNThemaximumpopulationgrowthrateiscalledthe

Intrinsicrateofincrease(rmax)Themaximumpopulationgrowthrateiscalledthe Intrinsicrateofincrease(rmax)Populationgrowthatrmaxiscalled

exponentialpopulationgrowthIfresourcesarenotlimited,anidealpopulationgrowsexponentiallyrmax=1rmax=0.5Pg.1160J-shapedcurvermaxisinfluencedbylifehistoryfeatures: 1)Ageatfirstreproduction 2)numberofoffspringproduced 3)howwelloffspringsurvivermaxisinverselyproportionaltogenerationtimeDosmallerorlargerorganismshavehigherrmax?Dosmallerorlargerorganismshavehigherrmax?SMALLERExponentialgrowthischaracteristicofpopulations…thatareintroducedintoneworunfilledenvironmentsthatarereboundingfromacatastrophiceventButwhataboutallotherpopulations? Dotheygrowexponentially?Butwhataboutallotherpopulations? Dotheygrowexponentially?

NONextModelofpopulationgrowth:(Pg.1160) “Logisticpopulationgrowth”which incorporatescarryingcapacityNextModelofpopulationgrowth: Logisticpopulationgrowthwhich incorporatescarryingcapacityCarryingcapacity(K)–themaximumpopulationsizethataparticularenvironmentcansupportwithnonetincreaseordecreaseoverarelativelylongperiodoftime(Pg.1160)“K”isnotanabsolute;Itvariesovertimeandspacewiththeabundanceoflimitingresources(ENVIRONMENTDEPENDENT!!!)Logisticpopulationgrowth: 1)incorporateschangesin“r”asNapproachesK 2)allowsrtovaryfromrmaxtozero 3)populationgrowthisrapidwhenN<<K 4)populationgrowthslowswhenNisclosetoKBuildingthemathematicalmodel:Startwith:

dN/dt=rNNewexpressions:IfK=maximumpopulationsizeforagivenenvironmentthen,K–N=the#ofadditionalindividualstheenvironmentcansustain

Buildingthemathematicalmodel:

Startwith:

dN/dt=rNNewexpressions: K–NTherefore,(K–N)/Ktellsuswhatfraction

ofKisstillavailableforpopulationgrowth

ex.Using(K–N)/KEx. IfK=1000,andN=10, ThenwhatfractionofKis stillavailableforpopulation growth?Using(K–N)/KEx. IfK=1000,andN=10, ThenwhatfractionofKis stillavailableforpopulation growth? (1000–10)/1000=.99or99%

ex.Using(K–N)/KEx. IfK=1000,andN=900,

ThenwhatfractionofKis stillavailableforpopulation growth?Using(K–N)/KEx. IfK=1000,andN=900,

ThenwhatfractionofKis stillavailableforpopulation growth?

(1000–900)/1000=.10or10%Using(K–N)/Kin

dN/dt=rN

Weget… Pg.1161

dN/dt=rN(K–N)/KThismodelreducesrasNincreasetowardK

ex.Pg.1161x=Pg.1161x=PercapitagrowthrateLogisticPopulationGrowth(Pg.1162):S-shapedcurveNaturalorlaboratorypopulationsfitthismodelreasonablywellHowever,thismodeldoesnotconsidertheeffectsofpredatorsandcompetitors,somanynaturalpopulationsdeviatefromthismodelSomeassumptionsofthelogisticmodel:1)populationsapproachKsmoothly–thereisusuallyaLAGTIMEinbetweenresourcedepletionanddecreasedbirthrates,somostpopulationsovershootK.ThisresultsinpopulationsoscillatingaroundKTimeNKovershootoscillationsSomeassumptionsofthelogisticmodel:1)populationsapproachKsmoothly–thereisusuallyaLAGTIMEinbetweenresourcedepletionanddecreasedbirthrates,somostpopulationsovershootK.ThisresultsinpopulationsoscillatingaroundK2)NotallpopulationreachorexistnearK.Manyinsectsandothersmall,rapidlyreproducingorganismsthataresensitivetoenvironmentalfluctuationsareinfluencedbyphysicalvariablesliketemperatureandmoisturewellbeforetheyreachKPopulationgrowthmodelsinfluencelifehistorycharacteristics(generalguidelinesasmostorganismsexhibitintermediatetraits) (Pg.1163)K–selectedpopulations:equilibriumpopulationsr-selectedpopulations:opportunisticpopulationsKnowTableNKKNK-selectedr-selectedWhatlimitspopulations?(Pg.1163)Whatlimitspopulations?Twobasictypesoffactors: 1)densitydependent

2)densityindependentdensitydependentfactors=populationregulationfactorsthatintensifyaspopulationdensityincreases (Pg.1164)Intraspecificcompetition–therelianceofindividualsofthesamespeciesonthesamelimitedresourcesSo,aspopulationsizeincreases,theavailableresourcesdecrease,andcompetitionforresourcesincreasesEx.CompetitionforresourcesCompetitioninfluencessurvivalCompetitionincreasesHighDensitycanresultin: 1)crowding 2)fewerresourcesforeachindividual 3)weakoffspring(duetoresourcesputintotheirproduction) 4)Build-upoftoxinsandwasteinenvironmentwhich negativelyinfluencesindividuals 5)Increase

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論