![當(dāng)代市場調(diào)研 (原第12版)指導(dǎo)手冊 Instructor Manual ch10 市場營銷分析_第1頁](http://file4.renrendoc.com/view14/M08/2C/36/wKhkGWZYR-6AC27CAAHxiZfMEqY894.jpg)
![當(dāng)代市場調(diào)研 (原第12版)指導(dǎo)手冊 Instructor Manual ch10 市場營銷分析_第2頁](http://file4.renrendoc.com/view14/M08/2C/36/wKhkGWZYR-6AC27CAAHxiZfMEqY8942.jpg)
![當(dāng)代市場調(diào)研 (原第12版)指導(dǎo)手冊 Instructor Manual ch10 市場營銷分析_第3頁](http://file4.renrendoc.com/view14/M08/2C/36/wKhkGWZYR-6AC27CAAHxiZfMEqY8943.jpg)
![當(dāng)代市場調(diào)研 (原第12版)指導(dǎo)手冊 Instructor Manual ch10 市場營銷分析_第4頁](http://file4.renrendoc.com/view14/M08/2C/36/wKhkGWZYR-6AC27CAAHxiZfMEqY8944.jpg)
![當(dāng)代市場調(diào)研 (原第12版)指導(dǎo)手冊 Instructor Manual ch10 市場營銷分析_第5頁](http://file4.renrendoc.com/view14/M08/2C/36/wKhkGWZYR-6AC27CAAHxiZfMEqY8945.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
McDaniel&Gates–MarketingResearch,12thEdition Instructor’sManual
Copyright?2021JohnWiley&Sons,Inc. 10-
CHAPTER10
MarketingAnalytics
LEARNINGOBJECTIVES
1.Understandwhat’sincludedinmarketinganalytics.
2.Reviewtechniquesforanalyzingdata.
3.Gainagreaterunderstandingofbigdata.
4.Exploredatamining.
5.Understanddifferencesinanalyticalforbigandlittledata.
6.Defineartificialintelligence,machinelearninganddeeplearning.
7.Outlinethekeyissuesregardingconsumerprivacy.
KEYTERMS
ArtificialintelligenceorAI
Backpropagation
Behavioraltargeting
Bigdata
CRISP-DMFramework
Datamining
Datavisualization
Deeplearning
Descriptiveanalytics
Machinelearning
Marketinganalytics
Marketingdashboard
Neuralnetworks
Predictiveanalytics
Prescriptiveanalytics
Surgepricing
CHAPTERSUMMARY
Thischapterwilllookatsomeofthetoolsthatenableresearcherstoanalyzeandgaininsightsfromalltypesofdata.Itbeginswithadiscussionofmarketinganalytics,whatitisandwhattheprocessis.Next,itdiscussesbigdata.Thisincludesitsbackground,howitworks,andnowtoanalyzeit.
Next,itdiscussesdescriptive,predictive,andprescriptiveanalytics.Afterthat,itdiscussesdatamining,artificialintelligence,machinelearning,anddeeplearning.Thechapterthistransitionsintobehavioraltargetingandsurgepricing.Next,itdiscussesdatavisualization.Aspartofthatdiscussion,itcoversinfographicsandmarketingdashboards.Itconcludeswithadiscussionofprivacyissues.
QUESTIONSFORREVIEWANDCRITICALTHINKING
Definemarketinganalytics.Whyisitsoimportanttocompanies?
AsdefinedinChapter1,marketinganalyticsisthediscovery,interpretation,andcommunicationofmeaningfulpatternsindata.Thisboilsdowntopredictionorclassificationandtheassociatedinsights.
Marketinganalyticsisimportantbecausecompanieshavetounderstandtheirmarketsinordertoproduceproductsorservicesthataredemandedbytheirmarketsandinordertobeabletorespondtochangesintheirmarket.
Namesometypesofinformationthatmightbefoundinanycompany’sdatabaseandthesourcesofthisinformation.
Anyinformationthefirmcollectsfromitscustomers,suppliers,andothersourcesislikelystoredintheirdatabase.Forexample,Visa,MasterCard,AmericanExpressandothershavemassivedatabaseswhereawiderangeofpurchasesfromretailstores,restaurants,hotels,airlines,onlineretailers,serviceorganizationsandsooncanbeassociatedwithspecificpurchasersaboutwhomthecreditcardcompanieshaveagreatdealofpersonalinformationcoveringage,gender,income,occupation,placeofresidence,andalltheotherinformationyouprovidewhenyoufilloutacreditcardapplication.
Whatismeantbythetermdatamining?Brieflyexplainhowitisdone.
Dataminingisanumbrellatermforanalytictechniquesthatfacilitatefastpatterndiscoveryandmodelbuilding,particularlywithlargedatasets.Thetermislooselyappliedtoanytypeoflarge-scaledataorinformationprocessingaswellasanyapplicationofartificialintelligence,machinelearning,ordeeplearning.Dataminingisperformedusingartificialintelligence,machinelearning,anddeeplearning.
IthasbeensaidthatBigDataanalyticsturnsthescientificmethodonitshead.Whatdoesthismean?
Thescientificmethodisatypeofresearchwhereaproblemisdescribed,relevantdataiscollected,aresearchhypothesis(orhypotheses)isformulated,andthenthehypothesisistestedempirically.Withbigdata,thedataiscollectedfirstandthenanalyzedtofind,notreallyhypotheses,butrathertofindanswerstoquestions.
Whyhasbehavioraltargetingbecomesopopularwithmarketers?Whyisitcontroversial?
Behavioraltargetingistheuseofonlineandofflinedatatounderstandaconsumer’shabits,demographics,andsocialnetworksinordertoincreasetheeffectivenessofonlineadvertising.Thisallowscompaniestoimprovetheirabilitytomarkettotheircustomers.Forexample,Amazonmakingrecommendationstoitscustomers.Behavioraltargetingiscontroversialbecauseoftheprivacyimplicationsandthewayssomeofthedataiscollectedonline.
Whatisdeeplearning?Howisitdifferentfrommachinelearning?HowdotheserelatetoAI?
Machinelearningiswheremachinescanlearnbyexperienceandacquireskillswithouthumaninvolvement.Deeplearningisasubsetofmachinelearningwhereartificialneuralnetworks,algorithmsinspiredbythehumanbrain,learnfromlargeamountsofdataasinmachinelearningbutnowweaddbackpropagationwheremachineslearnfromtheirmistakes.
Bothmachineanddeeplearningareimplementationsofartificialintelligence,wherewecanteachmachinestodothingsthattypicallyrequirehumanintelligence.
Inconnectionwithdeeplearning,whatisbackpropagation?
BackpropagationiswherethedeeplearningAIrealizesithasmadeanerrorandmakesadjustmenttoimprovepredictions.
Whatisdatavisualization?Whyisitimportant?
Datavisualizationconsistsofgraphictoolsthatmakedataunderstandabletoawideraudiencethanjustanalystsanddatascientists.Datavisualizationisimportantbecausehumansunderstanddatamuchquickerandbettervisuallythanbylookingatnumbers.
Whatisamarketingdashboard?Howcanitbeused?
Marketingdashboardsareareportingtoolthatprovidesacomprehensivesnapshotofperformance-basedanalytics,keyperformanceindicators(KPIs),andothermarketingmetrics.Itcanbeusedtovisuallypresentanymarketinginformationcollectedbythefirm.
Dividetheclassintogroupsoffourorfive.EachteamshouldgototheInternetandlookupBigDataanalytics.EachteamshouldthenreporttotheclassonhowaspecificcompanyiseffectivelyusingBigDatatoimprovetheirmarketingefficiency.
Studentresponseswillvary.
REAL-LIFERESEARCH
Case10.1AffiliatedParkingSystemsLookstoNewPricingApproach
KeyPoints
APSownsandoperatesover300parkinglotswithslightlyover33,000parkingplaces.
APShasbeenstruggling,searchingfornewideastoincreaserevenuesfromexistinglots.
APSiswonderingifsurgepricingcouldhelpthem.
APSisinterestedindoingallfeecollectionfromtotallyelectronicallytofurtherreducevariablecosts.
APSwantstovarypricingbasedonthelevelofdemandforparkinginrealtime.
Questions
WouldyousaythatBillisontherighttrackregardingtheneedforartificialintelligencetoimplementdynamicpricing?Whydoyousaythat?
Studentopinionswillvary.However,withafixedinventoryofparkingspaces,dynamicpricingoffersabouttheonlyoptiontheyhaveforincreasingrevenue.
Ifheweretopursuetheideafurther(heobviouslywouldneedhelpfromaconsultingfirm),whatdatawouldbeneededtoimplementsurgeordynamicpricing?
Sincetheyown300parkinglots,thisistheperfectopportunitytopilottest(e.g.testmarket)theconceptifthatisdesired.
Inordertoimplementsurgepricing,theywouldneedtoknowhowdemandvarieswithtime-of-day,day-of-week,andspecialevents.Theycouldbeginbycollectingdemandfromtheelectronicsystemsandattendants.Somelotshavemanualsystemsandthesewouldbeincompatiblewithbothdatacollectionandsurgepricingsotheywouldneedtobeupgradedforthesystemtowork.
Wouldmodelsbeneeded?Whatwouldthemodelsdo?Howmighttheybedeveloped?
Machinelearningwouldberequiredtomodeldemandandadjustpricingonanongoingbases,raisingpriceswithspacesareinhighdemandandloweringpriceswhenspacesareinlowdemand.
Describetheultimatesystemthatwouldbeneededintermsofinputsneeded,howthoseinputswouldbecaptured,modelsneeded(justageneralsenseofwhatthemodelswouldneedtodo),howpricingwouldbecommunicatedtoperspectiveusersandhowfeeswouldbecollected.Mappingitalloutinadiagramwithafewcommentsonwhatisoccurringateachstepisprobablyagoodapproachtoansweringthisquestion.
WhilethisinitiallysoundssimilartosurgepricingwithUber,itisactuallyverydifferent.WithUber,youagreeonthepriceaheado
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保齡球館簡易裝修合同模板
- 預(yù)制性塑膠跑道施工方案
- 印染行業(yè)氨水配送協(xié)議
- 咖啡館設(shè)計合同樣本
- 旅游景區(qū)裝修安全合同范本
- 汽車維修中心裝修合同樣本
- 保健食品道路運(yùn)輸合同樣本
- 專業(yè)錄音棚裝修合同模板
- 旅游業(yè)務(wù)居間合作協(xié)議模板
- 順義重防腐地坪施工方案
- 《證券法培訓(xùn)》課件
- 2024年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 大班美術(shù)活動:傳統(tǒng)的節(jié)日
- 鞋類代理合作協(xié)議
- 2025理論學(xué)習(xí)計劃2025年理論中心組學(xué)習(xí)計劃
- 2025年醫(yī)美醫(yī)院公司組織架構(gòu)和業(yè)務(wù)流程
- 防滑防摔倒安全教育
- 乳腺癌課件教學(xué)課件
- 連續(xù)性腎替代治療抗菌藥物劑量調(diào)整專家共識(2024年版)解讀
- 山西省2024年中考物理試題(含答案)
- 春節(jié)節(jié)后收心安全培訓(xùn)
評論
0/150
提交評論