2022年江蘇省鹽城市聯(lián)誼校中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2022年江蘇省鹽城市聯(lián)誼校中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2022年江蘇省鹽城市聯(lián)誼校中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2022年江蘇省鹽城市聯(lián)誼校中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2022年江蘇省鹽城市聯(lián)誼校中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年江蘇省鹽城市聯(lián)誼校中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.拒絕“餐桌浪費(fèi)”,刻不容緩.節(jié)約一粒米的帳:一個(gè)人一日三餐少浪費(fèi)一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為()A. B. C. D..2.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②-1≤a≤-23;③對于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)3.如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與D點(diǎn)的水平距離為9m.高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是()A.球不會過網(wǎng) B.球會過球網(wǎng)但不會出界C.球會過球網(wǎng)并會出界 D.無法確定4.估計(jì)的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間5.如圖,點(diǎn)E是四邊形ABCD的邊BC延長線上的一點(diǎn),則下列條件中不能判定AD∥BE的是()A. B. C. D.6.若關(guān)于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..7.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣368.實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<09.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中表示互為相反數(shù)的點(diǎn)是A.點(diǎn)A和點(diǎn)C B.點(diǎn)B和點(diǎn)DC.點(diǎn)A和點(diǎn)D D.點(diǎn)B和點(diǎn)C10.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若4a+3b=1,則8a+6b-3的值為______.12.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________13.在△ABC中,點(diǎn)D在邊BC上,且BD:DC=1:2,如果設(shè)=,=,那么等于__(結(jié)果用、的線性組合表示).14.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點(diǎn)F,若AD=1,BD=2,BC=4,則EF=________.15.如圖,是用三角形擺成的圖案,擺第一層圖需要1個(gè)三角形,擺第二層圖需要3個(gè)三角形,擺第三層圖需要7個(gè)三角形,擺第四層圖需要13個(gè)三角形,擺第五層圖需要21個(gè)三角形,…,擺第n層圖需要_____個(gè)三角形.16.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個(gè)頂點(diǎn)都在Rt△ABC的邊上,當(dāng)矩形DEFG的面積最大時(shí),其對角線的長為_______.三、解答題(共8題,共72分)17.(8分)甲、乙兩人分別站在相距6米的A、B兩點(diǎn)練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點(diǎn)H與甲的水平距離AE為4米,現(xiàn)以A為原點(diǎn),直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達(dá)式及飛行的最高高度.18.(8分)已知頂點(diǎn)為A的拋物線y=a(x-)2-2經(jīng)過點(diǎn)B(-,2),點(diǎn)C(,2).(1)求拋物線的表達(dá)式;(2)如圖1,直線AB與x軸相交于點(diǎn)M,與y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點(diǎn)Q是折線A-B-C上一點(diǎn),過點(diǎn)Q作QN∥y軸,過點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN′,若點(diǎn)N′落在x軸上,請直接寫出Q點(diǎn)的坐標(biāo).19.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.求證:(1)AE=BF;(2)AE⊥BF.20.(8分)如圖,已知點(diǎn)D在反比例函數(shù)y=的圖象上,過點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC=.(1)求反比例函數(shù)y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).21.(8分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅不完整的圖補(bǔ)充完整;(3)求扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù);(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.22.(10分)在連接A、B兩市的公路之間有一個(gè)機(jī)場C,機(jī)場大巴由A市駛向機(jī)場C,貨車由B市駛向A市,兩車同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場大巴、貨車到機(jī)場C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時(shí)間.求機(jī)場大巴到機(jī)場C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.求機(jī)場大巴與貨車相遇地到機(jī)場C的路程.23.(12分)如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.24.在正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對應(yīng)點(diǎn).請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關(guān)系是________.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點(diǎn)睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.2、D【解析】

利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進(jìn)行判斷;利用2≤c≤3和c=-3a可對②進(jìn)行判斷;利用二次函數(shù)的性質(zhì)可對③進(jìn)行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn)可對④進(jìn)行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點(diǎn)坐標(biāo)(1,n),∴x=1時(shí),二次函數(shù)值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點(diǎn)坐標(biāo)(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項(xiàng)系數(shù)a決定拋物線的開口方向和大?。?dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時(shí),對稱軸在y軸左;當(dāng)a與b異號時(shí),對稱軸在y軸右.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn):拋物線與y軸交于(0,c).拋物線與x軸交點(diǎn)個(gè)數(shù)由判別式確定:△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).3、C【解析】分析:(1)將點(diǎn)A(0,2)代入求出a的值;分別求出x=9和x=18時(shí)的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點(diǎn)A(0,2)代入得:36a+2.6=2,解得:∴y與x的關(guān)系式為當(dāng)x=9時(shí),∴球能過球網(wǎng),當(dāng)x=18時(shí),∴球會出界.故選C.點(diǎn)睛:考查二次函數(shù)的應(yīng)用題,求范圍的問題,可以利用臨界點(diǎn)法求出自變量的值,根據(jù)題意確定范圍.4、C【解析】

根據(jù),可以估算出位于哪兩個(gè)整數(shù)之間,從而可以解答本題.【詳解】解:∵即

故選:C.【點(diǎn)睛】本題考查估算無理數(shù)的大小,解題的關(guān)鍵是明確估算無理數(shù)大小的方法.5、A【解析】

利用平行線的判定方法判斷即可得到結(jié)果.【詳解】∵∠1=∠2,∴AB∥CD,選項(xiàng)A符合題意;∵∠3=∠4,∴AD∥BC,選項(xiàng)B不合題意;∵∠D=∠5,∴AD∥BC,選項(xiàng)C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項(xiàng)D不合題意,故選A.【點(diǎn)睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關(guān)鍵.6、A【解析】

根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.7、B【解析】

解:∵O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,∴OA=5,AB∥OC,∴點(diǎn)B的坐標(biāo)為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)B,∴﹣4=,得k=﹣32.故選B.【點(diǎn)睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關(guān)鍵在于根據(jù)A點(diǎn)坐標(biāo)求得OA的長,再根據(jù)菱形的性質(zhì)求得B點(diǎn)坐標(biāo),然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.8、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項(xiàng)正確,不符合題意;B、a的相反數(shù)≠2,故本選項(xiàng)錯(cuò)誤,符合題意;C、a的絕對值>2,故本選項(xiàng)正確,不符合題意;D、2a<0,故本選項(xiàng)正確,不符合題意.故選B.考點(diǎn):實(shí)數(shù)與數(shù)軸.9、C【解析】

根據(jù)相反數(shù)的定義進(jìn)行解答即可.【詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點(diǎn),可確定點(diǎn)A和點(diǎn)D表示互為相反數(shù)的點(diǎn).故答案為C.【點(diǎn)睛】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關(guān)鍵.10、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個(gè)外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點(diǎn):平行線的性質(zhì).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、-1【解析】

先求出8a+6b的值,然后整體代入進(jìn)行計(jì)算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點(diǎn)睛】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.12、75°【解析】

先根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.13、【解析】

根據(jù)三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點(diǎn)睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.14、【解析】

由DE∥BC可得出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)和平行線的性質(zhì)解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點(diǎn)睛】此題考查相似三角形的判定和性質(zhì),關(guān)鍵是由DE∥BC可得出△ADE∽△ABC.15、n2﹣n+1【解析】

觀察可得,第1層三角形的個(gè)數(shù)為1,第2層三角形的個(gè)數(shù)為3,比第1層多2個(gè);第3層三角形的個(gè)數(shù)為7,比第2層多4個(gè);…可得,每一層比上一層多的個(gè)數(shù)依次為2,4,6,…據(jù)此作答.【詳解】觀察可得,第1層三角形的個(gè)數(shù)為1,第2層三角形的個(gè)數(shù)為22?2+1=3,第3層三角形的個(gè)數(shù)為32?3+1=7,第四層圖需要42?4+1=13個(gè)三角形擺第五層圖需要52?5+1=21.那么擺第n層圖需要n2?n+1個(gè)三角形。故答案為:n2?n+1.【點(diǎn)睛】本題考查了規(guī)律型:圖形的變化類,解題的關(guān)鍵是由圖形得到一般規(guī)律.16、或【解析】

分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時(shí),矩形的面積最大,最大值為3,此時(shí)對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時(shí),矩形的面積最大為3,此時(shí)對角線==∴矩形面積的最大值為3,此時(shí)對角線的長為或故答案為或【點(diǎn)睛】本題考查相似三角形的應(yīng)用、矩形的性質(zhì)、二次函數(shù)的最值等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題三、解答題(共8題,共72分)17、米.【解析】

先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達(dá)式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達(dá)式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點(diǎn)睛】本題考核知識點(diǎn):二次函數(shù)的應(yīng)用.解題關(guān)鍵點(diǎn):熟記二次函數(shù)的基本性質(zhì).18、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【解析】

(1)將點(diǎn)B坐標(biāo)代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據(jù)此證△OPE∽△FAE得===,即OP=FA,設(shè)點(diǎn)P(t,-2t-1),列出關(guān)于t的方程解之可得;(3)分點(diǎn)Q在AB上運(yùn)動(dòng)、點(diǎn)Q在BC上運(yùn)動(dòng)且Q在y軸左側(cè)、點(diǎn)Q在BC上運(yùn)動(dòng)且點(diǎn)Q在y軸右側(cè)這三種情況分類討論即可得.【詳解】解:(1)把點(diǎn)B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達(dá)式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設(shè)直線AB表達(dá)式為y=kx+b,代入點(diǎn)A,B的坐標(biāo)得,解得,∴直線AB的表達(dá)式為y=-2x-1,易求E(0,-1),F(xiàn)(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設(shè)點(diǎn)P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當(dāng)t1=-時(shí),也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點(diǎn)Q在AB上運(yùn)動(dòng),過N′作直線RS∥y軸,交QR于點(diǎn)R,交NE的延長線于點(diǎn)S,設(shè)Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點(diǎn)Q在BC上運(yùn)動(dòng),且Q在y軸左側(cè),過N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點(diǎn)Q在BC上運(yùn)動(dòng),且點(diǎn)Q在y軸右側(cè),過N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、翻折變換的性質(zhì)及勾股定理等知識點(diǎn).19、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個(gè)等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個(gè)夾角都是直角減去∠BOE的結(jié)果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.20、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點(diǎn)坐標(biāo)可求得OA的長,再利用三角函數(shù)的定義可求得OC的長,可求得C、D點(diǎn)坐標(biāo),再利用待定系數(shù)法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設(shè)直線AC關(guān)系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.21、(1)本次參加抽樣調(diào)查的居民有600人;(2)補(bǔ)圖見解析;(3)72°;(4).【解析】試題分析:(1)用B的頻數(shù)除以B所占的百分比即可求得結(jié)論;(2)分別求得C的頻數(shù)及其所占的百分比即可補(bǔ)全統(tǒng)計(jì)圖;(3)算出A的所占的百分比,再進(jìn)一步算出C所占的百分比,再扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù);(4)列出樹形圖即可求得結(jié)論.試題解析:(1)60÷10%=600(人).答:本次參加抽樣調(diào)查的居民有600人.(2)如圖;(3),360°×(1-10%-30%-40%)=72°.(4)如圖;(列表方法略,參照給分).P(C粽)=.答:他第二個(gè)吃到的恰好是C粽的概率是.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.用樣本估計(jì)總體;3.扇形統(tǒng)計(jì)圖;4.列表法與樹狀圖法.22、(1)連接A、B兩市公路的路程為80km,貨車由B市到達(dá)A市所需

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論