版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市雅禮雨花中學(xué)2021-2022學(xué)年中考數(shù)學(xué)四模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.2.下列圖案是軸對稱圖形的是()A. B. C. D.3.下列計(jì)算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+14.的相反數(shù)是()A. B.2 C. D.5.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點(diǎn)在第三象限,且過點(diǎn)(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<06.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°7.如圖,直線AB、CD相交于點(diǎn)O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°8.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.9.八邊形的內(nèi)角和為()A.180° B.360° C.1080° D.1440°10.下列計(jì)算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x二、填空題(共7小題,每小題3分,滿分21分)11.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.12.如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC、BD,若S四邊形ABCD=18,則BD的最小值為_________.13.方程=1的解是_____.14.小李和小林練習(xí)射箭,射完10箭后兩人的成績?nèi)鐖D所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計(jì)這兩人中的新手是_____.15.如圖,平行四邊形ABCD中,AB=AC=4,AB⊥AC,O是對角線的交點(diǎn),若⊙O過A、C兩點(diǎn),則圖中陰影部分的面積之和為_____.16.已知點(diǎn)、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.17.已知關(guān)于x,y的二元一次方程組的解互為相反數(shù),則k的值是_________.三、解答題(共7小題,滿分69分)18.(10分)已知x1﹣1x﹣1=1.求代數(shù)式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.19.(5分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進(jìn)A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進(jìn)A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進(jìn)價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進(jìn)這兩種品牌化妝品共50套,且進(jìn)貨價錢不超過4000元,應(yīng)如何選擇進(jìn)貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?20.(8分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線與軸交于點(diǎn).(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點(diǎn)為,是拋物線上位于對稱軸右側(cè)的一點(diǎn),若,且與的面積相等,求點(diǎn)的坐標(biāo);(3)若在軸上有且只有一點(diǎn),使,求的值.21.(10分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),且與軸交于點(diǎn);點(diǎn)在反比例函數(shù)的圖象上,以點(diǎn)為圓心,半徑為的作圓與軸,軸分別相切于點(diǎn)、.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)請連結(jié),并求出的面積;(3)直接寫出當(dāng)時,的解集.22.(10分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點(diǎn)A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運(yùn)動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計(jì)方案施工,新座位區(qū)最高點(diǎn)E到地面的鉛直高度EG長度保持15米不變,使A、E兩點(diǎn)間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場館中央的運(yùn)動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計(jì)方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)23.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.求證:DE是⊙O的切線;若AD=16,DE=10,求BC的長.24.(14分)如圖,∠A=∠B=30°(1)尺規(guī)作圖:過點(diǎn)C作CD⊥AC交AB于點(diǎn)D;(只要求作出圖形,保留痕跡,不要求寫作法)(2)在(1)的條件下,求證:BC2=BD?AB.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負(fù)數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點(diǎn)縱坐標(biāo)取到最大值,結(jié)合圖象最小值只能由x=m時求出.②頂點(diǎn)縱坐標(biāo)取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當(dāng)m≤0≤x≤n<1時,當(dāng)x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當(dāng)m≤0≤x≤1≤n時,當(dāng)x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.2、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.3、C【解析】
解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點(diǎn)睛】本題考查合并同類項(xiàng),同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計(jì)算,掌握運(yùn)算法則正確計(jì)算是解題關(guān)鍵.4、B【解析】
根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因?yàn)?2+2=0,所以﹣2的相反數(shù)是2,故選B.【點(diǎn)睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.5、D【解析】
由二次函數(shù)的解析式可知,當(dāng)x=1時,所對應(yīng)的函數(shù)值y=a+b-2,把點(diǎn)(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點(diǎn)在第三象限,可以判斷出a與b的符號,進(jìn)而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點(diǎn)在第三象限,且經(jīng)過點(diǎn)(1,0)∴該函數(shù)是開口向上的,a>0
∵y=ax2+bx﹣2過點(diǎn)(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點(diǎn)在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點(diǎn)睛】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質(zhì)是解題的關(guān)鍵.6、C【解析】分析:欲求∠B的度數(shù),需求出同弧所對的圓周角∠C的度數(shù);△APC中,已知了∠A及外角∠APD的度數(shù),即可由三角形的外角性質(zhì)求出∠C的度數(shù),由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.7、C【解析】
根據(jù)對頂角性質(zhì)、鄰補(bǔ)角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項(xiàng)正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項(xiàng)正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項(xiàng)錯誤;D、∠AOD與∠BOD是鄰補(bǔ)角,所以∠AOD+∠BOD=180°,此選項(xiàng)正確;故選C.【點(diǎn)睛】本題主要考查垂線、對頂角與鄰補(bǔ)角,解題的關(guān)鍵是掌握對頂角性質(zhì)、鄰補(bǔ)角定義及垂線的定義.8、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補(bǔ)角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點(diǎn)睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).9、C【解析】試題分析:根據(jù)n邊形的內(nèi)角和公式(n-2)×180o可得八邊形的內(nèi)角和為(8-2)×180o=1080o,故答案選C.考點(diǎn):n邊形的內(nèi)角和公式.10、C【解析】
根據(jù)合并同類項(xiàng)的方法、同底數(shù)冪的除法法則、冪的乘方、負(fù)整數(shù)指數(shù)冪的意義逐項(xiàng)求解,利用排除法即可得到答案.【詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【點(diǎn)睛】本題考查了合并同類項(xiàng)的方法、同底數(shù)冪的除法法則、冪的乘方、負(fù)整數(shù)指數(shù)冪的意義,解答本題的關(guān)鍵是熟練掌握各知識點(diǎn).二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:由m與n為已知方程的解,利用根與系數(shù)的關(guān)系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點(diǎn):根與系數(shù)的關(guān)系.12、6【解析】
過A作AM⊥CD于M,過A作AN⊥BC于N,先根據(jù)“AAS”證明△DAM≌△BAN,再證明四邊形AMCN為正方形,可求得AC=6,從而當(dāng)BD⊥AC時BD最小,且最小值為6.【詳解】如下圖,過A作AM⊥CD于M,過A作AN⊥BC于N,則∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四邊形AMCN為正方形,∴S四邊形ABCD=S四邊形AMCN=AC2,∴AC=6,∴BD⊥AC時BD最小,且最小值為6.故答案為:6.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),正方形的判定與性質(zhì),正確作出輔助線是解答本題的關(guān)鍵.13、x=3【解析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解,故答案為3.【點(diǎn)睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結(jié)果須代入最簡公分母進(jìn)行檢驗(yàn),結(jié)果為零,則原方程無解;結(jié)果不為零,則為原方程的解.14、小李.【解析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.15、1.【解析】
∵∠AOB=∠COD,∴S陰影=S△AOB.∵四邊形ABCD是平行四邊形,∴OA=AC=×1=2.∵AB⊥AC,∴S陰影=S△AOB=OA?AB=×2×1=1.【點(diǎn)睛】本題考查了扇形面積的計(jì)算.16、-1【解析】
利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進(jìn)而得出,據(jù)此可得k的取值.【詳解】解:點(diǎn)、都在反比例函數(shù)的圖象上,,
在每個象限內(nèi),y隨著x的增大而增大,
反比例函數(shù)圖象在第一、三象限,
,
的值可以取等,答案不唯一
故答案為:.【點(diǎn)睛】本題考查反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.17、-1【解析】
∵關(guān)于x,y的二元一次方程組的解互為相反數(shù),∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案為-1三、解答題(共7小題,滿分69分)18、2.【解析】
將原式化簡整理,整體代入即可解題.【詳解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【點(diǎn)睛】本題考查了代數(shù)式的化簡求值,屬于簡單題,整體代入是解題關(guān)鍵.19、(1)A、B兩種品牌得化妝品每套進(jìn)價分別為100元,75元;(2)A種品牌得化妝品購進(jìn)10套,B種品牌得化妝品購進(jìn)40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元【解析】
(1)求A、B兩種品牌的化妝品每套進(jìn)價分別為多少元,可設(shè)A種品牌的化妝品每套進(jìn)價為x元,B種品牌的化妝品每套進(jìn)價為y元.根據(jù)兩種購買方法,列出方程組解方程;(2)根據(jù)題意列出不等式,求出m的范圍,再用代數(shù)式表示出利潤,即可得出答案.【詳解】(1)設(shè)A種品牌的化妝品每套進(jìn)價為x元,B種品牌的化妝品每套進(jìn)價為y元.得解得:,答:A、B兩種品牌得化妝品每套進(jìn)價分別為100元,75元.(2)設(shè)A種品牌得化妝品購進(jìn)m套,則B種品牌得化妝品購進(jìn)(50﹣m)套.根據(jù)題意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利潤是30m+20(50﹣m)=1000+10m,當(dāng)m取最大10時,利潤最大,最大利潤是1000+100=1100,所以A種品牌得化妝品購進(jìn)10套,B種品牌得化妝品購進(jìn)40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元.【點(diǎn)睛】本題考查一元一次不等式組的應(yīng)用,將現(xiàn)實(shí)生活中的事件與數(shù)學(xué)思想聯(lián)系起來,讀懂題列出不等式關(guān)系式即可求解.20、(1).;(2)點(diǎn)坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點(diǎn)坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點(diǎn),且P為切點(diǎn),P為MN的中點(diǎn),運(yùn)用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關(guān)于對稱.,,.,,.綜上所述,點(diǎn)坐標(biāo)為;.(3)由題意可得:.,,,即.,,.設(shè)的中點(diǎn)為,點(diǎn)有且只有一個,以為直徑的圓與軸只有一個交點(diǎn),且為切點(diǎn).軸,為的中點(diǎn),.,,,,即,.,.點(diǎn)睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關(guān)系列方程解決問題,會分類討論各種情況是解題的關(guān)鍵.21、(1),;(2)4;(3).【解析】
(1)連接CB,CD,依據(jù)四邊形BODC是正方形,即可得到B(1,2),點(diǎn)C(2,2),利用待定系數(shù)法即可得到反比例函數(shù)和一次函數(shù)的解析式;
(2)依據(jù)OB=2,點(diǎn)A的橫坐標(biāo)為-4,即可得到△AOB的面積為:2×4×=4;
(3)依據(jù)數(shù)形結(jié)合思想,可得當(dāng)x<1時,k1x+b?>1的解集為:-4<x<1.【詳解】解:(1)如圖,連接,,∵⊙C與軸,軸相切于點(diǎn)D,,且半徑為,,,∴四邊形是正方形,,,點(diǎn),把點(diǎn)代入反比例函數(shù)中,解得:,∴反比例函數(shù)解析式為:,∵點(diǎn)在反比例函數(shù)上,把代入中,可得,,把點(diǎn)和分別代入一次函數(shù)中,得出:,解得:,∴一次函數(shù)的表達(dá)式為:;(2)如圖,連接,,點(diǎn)的橫坐標(biāo)為,的面積為:;(3)由,根據(jù)圖象可知:當(dāng)時,的解集為:.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)依據(jù)待定系數(shù)法求函數(shù)解析式,解題的關(guān)鍵是求出C,B點(diǎn)坐標(biāo).22、不滿足安全要求,理由見解析.【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計(jì)方案不滿足安全要求”.【詳解】解:施工方提供的設(shè)計(jì)方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計(jì)方案不滿足安全要求.23、(1)證明見解析;(2)15.【解析】
(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年《高等數(shù)學(xué)2》教案編寫:從課程目標(biāo)到教學(xué)策略
- 2024年旅游開發(fā):《廢墟的召喚》課件的景點(diǎn)推廣
- 2024年KUKA機(jī)器人編程與仿真培訓(xùn)新紀(jì)元
- 2024會計(jì)專業(yè)自我鑒定34篇
- 從傳統(tǒng)到未來:《黃河落日》課件設(shè)計(jì)轉(zhuǎn)型
- 旅游教育創(chuàng)新:2024年客源國教案設(shè)計(jì)
- 教案新思維:2024年海洋化學(xué)資源的環(huán)境影響
- 2022年護(hù)士招聘考試試卷
- 2024年東京奧運(yùn)會:小星星火炬?zhèn)鬟f儀式
- 五年級數(shù)學(xué)下冊三剪紙中的數(shù)學(xué)-分?jǐn)?shù)加減法一信息窗2同分母分?jǐn)?shù)加減法教案青島版六三制
- 露營基地合同協(xié)議書
- 2024雨量雷達(dá)監(jiān)測系統(tǒng)技術(shù)導(dǎo)則
- 心理危機(jī)評估的自我保護(hù)與邊界管理
- 數(shù)學(xué)應(yīng)用題解題思路教學(xué)設(shè)計(jì)方案
- 政務(wù)信息宣傳培訓(xùn)課件
- 重慶新高考改革方案
- 拳擊比賽策劃方案2篇
- 商業(yè)模式與創(chuàng)新基礎(chǔ)知識培訓(xùn)
- 2011年中招英語質(zhì)量分析會
- 合規(guī)與監(jiān)管部門魚骨圖KPI設(shè)計(jì)
- (細(xì)節(jié)版)道路維修工程計(jì)劃
評論
0/150
提交評論