![國際會議發(fā)言稿_第1頁](http://file4.renrendoc.com/view5/M00/1C/15/wKhkGGZZL66API_uAAIWx7a3jwE191.jpg)
![國際會議發(fā)言稿_第2頁](http://file4.renrendoc.com/view5/M00/1C/15/wKhkGGZZL66API_uAAIWx7a3jwE1912.jpg)
![國際會議發(fā)言稿_第3頁](http://file4.renrendoc.com/view5/M00/1C/15/wKhkGGZZL66API_uAAIWx7a3jwE1913.jpg)
![國際會議發(fā)言稿_第4頁](http://file4.renrendoc.com/view5/M00/1C/15/wKhkGGZZL66API_uAAIWx7a3jwE1914.jpg)
![國際會議發(fā)言稿_第5頁](http://file4.renrendoc.com/view5/M00/1C/15/wKhkGGZZL66API_uAAIWx7a3jwE1915.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
國際會議發(fā)言稿
篇一:國際學(xué)術(shù)會議發(fā)言稿
1.Prologue
Thankyou,Mr.Chairman,foryourgraciousintroduction.Iamhonoredtohavethechancetoaddressyouonthisspecialoccasion.Thetopicofmypaperis“TransactionCostandFarmers’ChoiceofAgriculturalProductsSelling”.Theoutlineofmytalkasfollows.ThefirstpartIwanttointroducethebackgroundofthisresearch.Thesecondpartsuggestsasimplehouseholdchoicemodel.Thethirdpartcoversthedatausedinthisresearch.Andthen,weintroducetheempiricalresults.Finally,asimpleconclusionisgiven.
2.Introduction
Well,let’smoveonthefirstpartofthistopic.Themotivationofthisworklikethis.Institutionaleconomicspositsthatagentsmakingdecisionsondifferenttypesoftransactionsdosoinacostlyway.Forexample,farmersdecidingsellaparticularcroptowhombasetheirdecisionsnotonlyonthepricetheyexpecttoreceiveineachmarketchoicebutalsoonadditionalcostsrelatedtotransactinginthesemarkets.
Iwanttouseapicturetoillustrateit.Forexample,givensomemarketchannels,farmers’choicescanberegardedasequilibriumbetweenthesurplusandtheadditionalcoststhatrelatedtotransacting.Especiallyindevelopingcountries,high-valuecropproducersfullyparticipateinthemarketandthetransactioncosthasbeenthehardconstrainttofarmers.Furthermore,Farmers’marketchoicescanbetakenasachoicedilemmaoftransactioncostandproductionsurplus.Consequently,thescientificquestionofthisresearchishowtransactioncostaffectsplanters’choices.
3.Methodology
Let’smovetothetheoreticalmodelofourresearch.Considerahouseholdmodelinonerotation.Instage1,famerηneedstoallocatetheinputfactors.ThisprocesscanqbesetintoafunctionlikethisQ??Q,Qηmeanstheoutputfarmersdecideqtoproduce.pimpliestheOutputpriceWimpliesInputPriceand.z:?isfixedinput.Onceproducewhatandproducehowmanyaredecided,nextquestiontobeconsideredishowmuchproductstobetransactedinmarket.HereweusethreeccCηmeanshowfunctionstodescribethisquestion.Thefirstequation,c??p,z?
muchagriculturalproductsusedbyfamersthemselves.pimpliesthepricethecagriculturalproduct,z?suggeststhefluctuationofCη.Thesecondequationq??Q??c?,qηmeanstheamountofagriculturalproductstransactedin
q?n?market.Thethirdequationi?q?impliestheamountexchangedinnthtime.
InStage3,farmerswilldecidetoselltheproductstowhom.Chanelj’smarketpriceis
bdecidedbyanexogenesispriceandfarmers’negotiatingpower.pij?p*
j?BBesidesthis,weuseamatrixtoshowthenetprofitofChaneljXik?ik,???ik?
andthenfarmers’choicecanbeexpressedinatypicalchoicemodel
expPr?1exp?k?1
Basedonthechoicemodel,anotherimportantconceptisfamers’channelchoice.Here,wesetfivetypes.Theyrankbythemarketbarriers.Accordingly,wesetagroupdiscretenumbertoexpressthem.Y:dependentvariableY=5,meansfarmerchoose
brokers.Y=1,farmerssellproductstoconsumersdirectly.
4.Dataandestimationprocedures
Here,weillustratethedatadistributionwiththismap.AccordingtotheAgriculturalregionalizationfromDepartmentofAgriculture,TheapplespecializationareasinChinacontaintwoparts:BoSeaareaandLoessPlateau.BoSeaAreainredcolor,containsHebei,ShandongandLiaoning3provinces.AndLoessPlateauingreencolor,containsShanxi,Henan,ShaanxiandGansu4provinces.Firstly,weusePPSmethodtogetthefirststagesamplingunit14countiesin7provinces.Thenuserandomsamplemethodtogetvillageandhousehold.Theyareoursampledistribution.
5.EmpiricalResults
6.Conclusions
篇二:國際會議作報告英語發(fā)言稿
Thankyou,prof.….Mynameis…..I’mfrom…..Iamverypleasedtobeheretojointhisforum.Thetopicofmypresentationispropertiesofrapidconstructionmaterialsforsoilpavementoffieldairfield.Asisshowninthepicture,themainpartsofmyresearchareaboutsoilpavement.
Mypresentationwillincludethesefourparts:
First,somebackgroundinformationaboutthisresearch;second,themainworkwehavedone;third,someconclusionswehavegotandthelast:innovationandpresentationofourpublishedpapers.
WhyIchoosethisitem?Ithinkitcanbeillustratedfromthefollowingfourparts.First,theexistingquantityofairfieldsisstillnotsufficientandtheairfieldshavemanyshortcomingsespeciallyinwartime.Second,thecomplementaryfacilities,suchashighwayrunwaysarefarlessthanairfields,however,havemoreweakness.Third,acertainamountoffieldairfieldisquitenecessaryconsideringsomeemergenciessuchasrescueanddisasterrelief.Forth,thefieldairfieldcanfillthevoidofairfieldandtheycan
becombinedtobeairfieldnetwork.
Themeaningandaimofthisresearchcontainsthreeparts.Fast,convenientandvalidity,fastmeansthefieldairfieldmustbeconstructed
asfastaspossible,convenientmeanstheconstructionshouldneedtheminimumequipment,laborandmaterialsconsideringtheactualconstructioncondition,validitymeanstheconstructedairfieldisabletosupporttheoperationofgivenaircraftinspecificallytime.
Justlikemanyotherterritories,thesituationoftheresearchisthattheArmytakesadvancedline.TheArmydeclaresthattheycanreachtoanywhereontheearthin96hours,themostimportantmethodforforceprojectionisthoughaircraft,thusrapidconstructionofpavementisthekeyproblemforrapidforcetransportation.
Themainworkwehavedonecanbesummarizedasfourparts,materialschoosing,schememaking,mechanicalpropertiesresearchandwater-stablepropertiesresearch.
Wechoosetwokindsofsoils,whicharegotfromXi’an,ShanxiprovinceandJiuquan,Gansuprovinceseparately.ThesandfromBaRiverwasconsideratetoinvestigatetheinfluenceofsandtothepropertiesofstabilizedsoil.Thechosenthreekindsofpowdersarecement,limeandnew-typestabilizerdevelopedbyChang’anUniversity.Theprinciplesinconsideringthefunctionof4kingsoffibersarereferringdifferentlength,typeandmixingthem.
Onaccountofthetime,Iwillmakeabriefdescriptionabouttheexperimentscheme.Insummary,threepartswereproposedtodistinguishtheaffectingfactorsinmakingexperimentscheme.Theyarepowdercontrol,fibercontrolandotherfactors.Takingpowdercontrolforexample,thedosageofcementisrespectively6%,8%and10%whenthesoilisstabilizedonlybycement,whilethedosageofcementdecreaseto3%,5%and7%whenthelimeisaddictedtostabilizedsoil.Thefollowingtwofactorsarestabilizerandsand.
Sixkindsofexperimentswereperformedtoinvestigatetheinfluenceofabovefactorstothemechanicalpropertiesofstabilizedsoil.Theaimofcompactiontestistofindthemaximumdrydensityandoptimummoisturecontent.Theaimofcompressionstrengthtestistodeterminetheoptimumdosageofcement,lime,powderstabilizerandfiber,meanwhileevaluatingtheperformanceofstabilizedsoil.Theaimofsplittingtensionstrengthtestissimilartocompressionstrengthtest,theleftpictureissamplestabilizedbycement,whiletherightpictureisthesamplestabilizedbyfiberandcement.Thedirectsheerisanotherimportantparameteringeotechnicalengineering.Itinfluencesthefoundationbearingcapacityandmanyotherpropertiesespeciallyforsoilbaseandbasecourse.Theleftpictureshowsthecourseofmaking
sampleandtherightpictureshowsthetestprocess.
TheCBRtestandreboundmodulustestarereferencedfromhighwaytestspecificationtoevaluatingthecomprehensivecapacitiesofeachstructurelevelofthepavement.Forboththetwotests,theleftpictureshowsthecourseofmakingsampleandtherightpictureshowsthetestprocess.Whatshouldbenotedisthatthenumberofsampleisatleast6,thelastresultistheaveragevalueofthesedategotfromtestaftereliminatingthebadresults.
Fourkindsofexperimentswereperformedtoinvestigatetheinfluenceofabovefactorstothewater-stablepropertiesofstabilizedsoil.Thescouringtestisnotthestatedexperimentincurrentspecification.Itisperformedbyusthroughlookinguplargequantityofinterrelatedliterature,andtwodifferentwaystocarryout.Theleftpictureshowsthemethodofvibrationtableandtherightpictureshowsthemethodoffatiguetestinstrument.Penetranttestreferstotheexperimentinrelatingconcretespecification.Theleftpictureshowstheprocessofsaturation,therightpictureshowsthetestprocess.
Cantabriatestandothertestsarealloriginalexperiments;theyareusedinstabilizedsoilforfirsttime,hereIwillnotdevelopmynarrative.
Asregardstheinnovation,Ithinkitthroughoutthewholeresearch,includingmaterialschoosing,schememaking,mechanicalandwater-stableexperiments.Ithinkitcanbedrawledfromthefollowingkeywords,suchassoilchoosing,sand,powders,fibers,andsoon.Threemainpartscanbesummarized.First,selectingtwokindsofsoils,threekindsofpowders,severalcombinations;second,severalkindsoffibers,differentlengthandadmixture;third,comprehensiveexperiments,testmethodandtestinstrument.
篇三:模擬國際會議演講稿
Recsplorer:RecommendationAlgorithmsBasedonPrecedenceMining
1.Introduction
Thankyouverymuch,Dr.Li,foryourkindintroduction.Ladiesandgentlemen,Goodmorning!Iamhonoredtohavebeeninvitedtospeakatthisconference.BeforeIstartmyspeech,letmeaskaquestion.Doyouthinkrecomemdationsfromothersareusefulforyourinternetshopping?Thankyou.Itisobviousthatrecommendationsplayanimportantroleinourdailyconsumptiondecisions.
Today,mytopicisaboutRecommendationAlgorithmsBasedonPrecedenceMining.Iwanttoshareourinterestingresearchresultonrecommendationalgorithmswithyou.Thecontentofthispresentationisdividedinto5parts:insession1,Iwillintruducethetradictionalrecommendationandournewstrategy;insession2,IwillgivetheformaldefinitionofPrecedenceMining;insession3,Iwilltalkaboutthenovelrecommendationalgorithms;experimentalresultwillbeshowedinsession4;andfinally,Iwillmakeaconclusion.
2.Body
Session1:Introduction
Thepictureonthisslideisaninstanceofrecommemdationapplicationonamazon.
Recommendersystemsprovideadviceonproducts,movies,webpages,andmanyothertopics,andhavebecomepopularinmanysites,suchasAmazon.Manysystemsusecollaborativefilteringmethods.ThemainprocessofCFisorganizedasfollow:first,identifyuserssimilartotargetuser;second,recommenditemsbasedonthesimilarusers.Unfortunately,theorderofconsumeditemsisneglect.Inourpaper,weconsideranewrecommendationstrategybasedonprecedencepatterns.Thesepatternsmayencompassuserpreferences,encodesomelogicalorderofoptionsandcapturehowinterestsevolve.
Precedenceminingmodelestimatetheprobabilityofuserfutureconsumptionbasedonpastbehavior.Andtheseprobabilitiesareusedtomakerecommendations.Throughourexperiment,precedenceminingcansignificantlyimproverecommendationperformance.Futhermore,itdoesnotsufferfromthesparsityofratingsproblemandexploitpatternsacrossallusers,notjustsimilarusers.
Thisslidedemonstratesthedifferencesbetweencollaborativefilteringandprecedencemining.Supposethatthescenarioisaboutcourseselection.Eachquarter/semesterastudentchoosesacourse,andratesitfrom1to5.Figurea)showsfivetranscripts,atranscriptmeansalistofcourse.Uisourtargetstudentwhoneedrecommendations.Figureb)illustrateshowCFwork.Assumesimilarusersshareatleasttwocommoncoursesandhavesimilarrating,thenu3andu4aresimilartou,andtheircommoncoursehwillbearecommendationtou.Figurec)presentshowprecedenceminingwork.Forthisexample,weconsiderpatternswhereonecoursefollowsanother.Supposepatternsoccouratleasttwotranscripsarerecognizedassignificant,then,andarefoundout.Andd,h,andfarerecommendationtouwhohastakena,gande.
NowIwillaprobabilisticframeworktosolvetheprecedenceminingproblems.Ourtargetuserhasselectedcoursea,wewanttocomputetheprobabilitycoursexwillfollow,,Pr[x|a].
﹁howerve,whatwereallyneedtocalculateisPr[x|aX]ratherthanPr[x|a].Becauseinourcontext,
wearedecidingifxisagoodrecommendationforthetargetuserthathastakena.Thusweknowthatourtargetuser’stranscriptdoesnothavexbeforea.Forinstance,thetranscriptno.5willbeomitted.Inmorecommonsituation,ourtargetuserhastakenalistofcourses,T={a,b,c,…}not
﹁justa.Thus,whatreallyneedisPr[x|TX].Thequestionishowtofigureoutthisprobability.Iwill
answeritlater.
Session2:PrecedenceMining
WeconsiderasetDofdistinctcourses.WeuselowercaseletterstorefertocoursesinD.AtranscriptTisasequenceofcourses,,a->b->c->d.ThenthedefinitionofTop-kRecommendationProblemisasfollows.GivenasettranscriptsoverDfornusers,theextratranscriptTofatargetuser,andadesirednumberofrecommendationsk,ourgoalisto:
1.Assignascorescoretoeverycoursex∈Dthatreflectshowlikelyitisthetargetstudentwillbeinterestedintakingx.Ifx∈T,thenscore=0.
2.Usingthescorefunction,selectthetopkcoursestorecommendtothetargetuser.
Tocomputescores,weproposetousethefollowingstatistics,wherex,y∈D:
f:thenumberoftranscriptsthatcontainx.
g:thenumberoftranscriptsinwhichxprecedescoursey.
Thisslideshowsthecalculationresultoffandg.Forexample,fromthetable,weknowthatfis10andgis3.
WeproposeaprecedenceminingmodeltosolvetheTop-kRecommendationProblem.Hereare
﹁somenotation:xy,whichwehavememtionedinsession1,referstotranscriptwherexoccurs
withoutaprecedingy;x﹁yreferstotranscriptwherexoccurswithoutyfollowingit.Weusequantitiesfandgtocompteprobabilitiesthatencodetheprecedenceinformation.Forinstance,fromformular1to7.Iwouldnottellthedetailofallformulars.Wejustpayattentionto
﹁formular5,notethatthisquantityaboveisthesameas:Pr[x﹁y|yx]whichwillbeusedto
computescore.
Asweknow,thetargetuserusuallyhastakenalistofcoursesratherthanacourse,soweneedto
﹁extentourprobabilitycalculationformulars.Forexample,supposeT={a,b},Pr[xT]the
probabilityxoccurswithouteitheranaorbprecedingit;Pr[x﹁T]theprobabilityxoccurswithouteitheranaorbfollowingit.Thisprobabilitycanbecalculatedexactly.Sohowtocalculateit?
Session3:RecommendationAlgorithms
Let’sreviewsession2.Themaingoaloftherecommendationalgorithmsistocalculatethescore,andthenselectthetopkcoursesbasedonthesescores.TraditionalrecommendationalgorithmscomputearecommendationscoreforacoursexinDonlybasedonitsfrequencyofoccurence.Itdoesnottakeintoaccountthecoursestakenbythetargetuser.
OurrecommendationalgorithmscalledSingleMCconquertheshortcomingofthetraditionalones.Itcomputesthescoreusingtheformular5.Thedetailisasfollows:astudentwithatranscripToftakencourses,forthecoursey∈T,ifyandxappeartogetherintranscriptssatisfiesthe
﹁thresholdθ,thencomputethePr[x﹁y|yx],reflectingthelikelihoodthestudentwilltakecoursex
﹁andignoringtheeffectoftheothercoursesinT;finallythemaximumofPr[x﹁y|yx]ischoosenas
thescore.
HereisthecalculationformularofscoreofSignleMC.Forexample,withthehigerscore,dwillberecommended.
AnothernewrecommendationalgorithmnamedJointProbabilities
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)中無機(jī)鹽應(yīng)用考核試卷
- 2025-2030年口腔激光治療儀行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年可吸收骨折固定釘設(shè)計行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年復(fù)古多功能計時手表企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年可穿戴式姿勢矯正器企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 摩托車油箱清潔與保養(yǎng)考核試卷
- 摩托車電路故障案例分析考核試卷
- 電商平臺招商居間協(xié)議
- 2025年度智能辦公空間裝飾施工一體化服務(wù)合同
- 海運(yùn)合同貨物延誤處理策略
- 2025公司借款合同范本借款合同
- 閩教版(2020)小學(xué)信息技術(shù)三年級上冊第2課《人工智能在身邊》說課稿及反思
- 語文-百師聯(lián)盟2025屆高三一輪復(fù)習(xí)聯(lián)考(五)試題和答案
- 地理-山東省濰坊市、臨沂市2024-2025學(xué)年度2025屆高三上學(xué)期期末質(zhì)量檢測試題和答案
- 正面上手發(fā)球技術(shù) 說課稿-2023-2024學(xué)年高一上學(xué)期體育與健康人教版必修第一冊
- 佛山市普通高中2025屆高三下學(xué)期一模考試數(shù)學(xué)試題含解析
- 人教 一年級 數(shù)學(xué) 下冊 第6單元 100以內(nèi)的加法和減法(一)《兩位數(shù)加一位數(shù)(不進(jìn)位)、整十?dāng)?shù)》課件
- 事故隱患排查治理情況月統(tǒng)計分析表
- 永磁直流(汽車)電機(jī)計算程序
- 國家電網(wǎng)招聘2025-企業(yè)文化復(fù)習(xí)試題含答案
- 2024年江西省高考物理試卷(含答案解析)
評論
0/150
提交評論