江西省吉安市七校聯(lián)盟重點中學(xué)2024屆中考數(shù)學(xué)五模試卷含解析_第1頁
江西省吉安市七校聯(lián)盟重點中學(xué)2024屆中考數(shù)學(xué)五模試卷含解析_第2頁
江西省吉安市七校聯(lián)盟重點中學(xué)2024屆中考數(shù)學(xué)五模試卷含解析_第3頁
江西省吉安市七校聯(lián)盟重點中學(xué)2024屆中考數(shù)學(xué)五模試卷含解析_第4頁
江西省吉安市七校聯(lián)盟重點中學(xué)2024屆中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省吉安市七校聯(lián)盟重點中學(xué)2024屆中考數(shù)學(xué)五模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.(a)=a B.a(chǎn)+a=aC.(3a)?(2a)=6a D.3a﹣a=32.滿足不等式組的整數(shù)解是()A.﹣2 B.﹣1 C.0 D.13.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°4.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.5.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.66.某大型企業(yè)員工總數(shù)為28600人,數(shù)據(jù)“28600”用科學(xué)記數(shù)法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×1047.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.8.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.99.下列說法正確的是()A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件B.明天下雪的概率為,表示明天有半天都在下雪C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.了解一批充電寶的使用壽命,適合用普查的方式10.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+12.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.13.如圖,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.14.如圖,AB是⊙O的直徑,點C在⊙O上,AE是⊙O的切線,A為切點,連接BC并延長交AE于點D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°15.化簡:=.16.如圖所示,在長為10m、寬為8m的長方形空地上,沿平行于各邊的方向分割出三個全等的小長方形花圃則其中一個小長方形花圃的周長是______m.17.如圖,矩形中,,,將矩形沿折疊,點落在點處.則重疊部分的面積為______.三、解答題(共7小題,滿分69分)18.(10分)填空并解答:某單位開設(shè)了一個窗口辦理業(yè)務(wù),并按顧客“先到達,先辦理”的方式服務(wù),該窗口每2分鐘服務(wù)一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務(wù)開始時刻024681012141618…每人服務(wù)時長2222222222…服務(wù)結(jié)束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當(dāng)a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務(wù)結(jié)束的時刻為.19.(5分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.20.(8分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當(dāng)△AGQ與△CEP相似,求線段AG的長.21.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:四邊形BFDE是平行四邊形.22.(10分)綜合與實踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.23.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.24.(14分)如圖,某同學(xué)在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)同底數(shù)冪的乘法的性質(zhì),冪的乘方的性質(zhì),積的乘方的性質(zhì),合并同類項的法則,對各選項分析判斷后利用排除法求解.【詳解】A.(a2)3=a2×3=a6,故本選項正確;B.a(chǎn)2+a2=2a2,故本選項錯誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項錯誤;D.3a﹣a=2a,故本選項錯誤.故選A.【點睛】本題考查了合并同類項,同底數(shù)冪的乘法,冪的乘方,積的乘方和單項式乘法,理清指數(shù)的變化是解題的關(guān)鍵.2、C【解析】

先求出每個不等式的解集,再根據(jù)不等式的解集求出不等式組的解集即可.【詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數(shù)解為0,故選C.【點睛】本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.3、C【解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關(guān)鍵.4、C【解析】

由平面圖形的折疊及正方形的展開圖結(jié)合本題選項,一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【點睛】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題5、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA6、D【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10﹣n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可【詳解】28600=2.86×1.故選D.【點睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵7、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設(shè)CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當(dāng)C從D點運動到E點時,即時,.當(dāng)A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應(yīng).故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.8、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內(nèi)角和定理以及多邊形的外角和定理9、C【解析】

根據(jù)必然事件、不可能事件、隨機事件的概念、方差和普查的概念判斷即可.【詳解】A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點朝上是隨機事件,錯誤;B.“明天下雪的概率為”,表示明天有可能下雪,錯誤;C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,正確;D.了解一批充電寶的使用壽命,適合用抽查的方式,錯誤;故選:C【點睛】考查方差,全面調(diào)查與抽樣調(diào)查,隨機事件,概率的意義,比較基礎(chǔ),難度不大.10、B【解析】

如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標(biāo)原點.【詳解】解:如圖,AB的中點即數(shù)軸的原點O.

根據(jù)數(shù)軸可以得到點A表示的數(shù)是.

故選:B.【點睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點確定數(shù)軸的原點是解決本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、A【解析】

根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征由A點坐標(biāo)為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標(biāo)可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標(biāo)為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關(guān)于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標(biāo)為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標(biāo)特征、等腰直角三角形的性質(zhì)和軸對稱的性質(zhì)及會用求根公式法解一元二次方程.12、【解析】

要求絲線的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.

∵圓柱底面的周長為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長最小為2AC=4dm.

故答案為:4dm【點睛】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.13、【解析】

解:設(shè)E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為14、B.【解析】試題分析:根據(jù)AE是⊙O的切線,A為切點,AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點:圓的基本性質(zhì)、切線的性質(zhì).15、2【解析】

根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.16、12【解析】

由圖形可看出:小矩形的2個長+一個寬=10m,小矩形的2個寬+一個長=8m,設(shè)出長和寬,列出方程組解之即可求得答案.【詳解】解:設(shè)小長方形花圃的長為xm,寬為ym,由題意得,解得,所以其中一個小長方形花圃的周長是.【點睛】此題主要考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:數(shù)形結(jié)合,弄懂題意,找出等量關(guān)系,列出方程組.本題也可以讓列出的兩個方程相加,得3(x+y)=18,于是x+y=6,所以周長即為2(x+y)=12,問題得解.這種思路用了整體的數(shù)學(xué)思想,顯得較為簡捷.17、10【解析】

根據(jù)翻折的特點得到,.設(shè),則.在中,,即,解出x,再根據(jù)三角形的面積進行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設(shè),則.在中,,即,解得,∴,∴.【點睛】此題主要考查勾股定理,解題的關(guān)鍵是熟知翻折的性質(zhì)及勾股定理的應(yīng)用.三、解答題(共7小題,滿分69分)18、(1)5;(2)5n﹣4,na+6a.【解析】

(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結(jié)束服務(wù)的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務(wù)開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務(wù)開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務(wù)結(jié)束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結(jié)束服務(wù)的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務(wù)開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務(wù)開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務(wù)開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務(wù)結(jié)束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數(shù)式,用代數(shù)式表示數(shù)的規(guī)律,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,尋找規(guī)律,列出代數(shù)式.19、(1)作圖見解析(2)為等腰三角形【解析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關(guān)鍵所在.20、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當(dāng)△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】

(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進而得出∠BGE=∠EGF,即可得出結(jié)論;

(2)先判斷出△BEG∽△CFE進而得出CF=,即可得出結(jié)論;

(3)分兩種情況,①△AGQ∽△CEP時,判斷出∠BGE=60°,即可求出BG;

②△AGQ∽△CPE時,判斷出EG∥AC,進而得出△BEG∽△BCA即可得出BG,即可得出結(jié)論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點E是BC的中點,∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當(dāng)CF=4時,即:=4,∴x=3,(0≤x≤3),即:y關(guān)于x的函數(shù)表達式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對角線,∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:當(dāng)△AGQ與△CEP相似,線段AG的長為2或4﹣.【點睛】本題考核知識點:相似三角形綜合.解題關(guān)鍵點:熟記相似三角形的判定和性質(zhì).21、證明見解析【解析】

∵四邊形ABCD是平行四邊形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四邊形BFDE是平行四邊形.22、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論