版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廊坊三中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長線上的一點(diǎn),PT切⊙O于點(diǎn)T,M是OP的中點(diǎn),射線TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.2.若代數(shù)式的值為零,則實(shí)數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠33.如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.24.姜老師給出一個(gè)函數(shù)表達(dá)式,甲、乙、丙三位同學(xué)分別正確指出了這個(gè)函數(shù)的一個(gè)性質(zhì).甲:函數(shù)圖像經(jīng)過第一象限;乙:函數(shù)圖像經(jīng)過第三象限;丙:在每一個(gè)象限內(nèi),y值隨x值的增大而減?。鶕?jù)他們的描述,姜老師給出的這個(gè)函數(shù)表達(dá)式可能是()A. B. C. D.5.的相反數(shù)是()A. B.- C. D.-6.計(jì)算1+2+22+23+…+22010的結(jié)果是()A.22011–1 B.22011+1C. D.7.某種商品的進(jìn)價(jià)為800元,出售時(shí)標(biāo)價(jià)為1200元,后來由于該商品積壓,商店準(zhǔn)備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折8.點(diǎn)M(1,2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)9.下列生態(tài)環(huán)保標(biāo)志中,是中心對(duì)稱圖形的是()A.B.C.D.10.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是.12.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△ACD,延長AD、BC交于點(diǎn)E,則DE的長是_____.13.如圖,點(diǎn)E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點(diǎn)F,∠CDE的平分線交EF于點(diǎn)G,AE=2DG.若BC=8,則AF=_____.14.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.15.當(dāng)關(guān)于x的一元二次方程ax2+bx+c=0有實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍時(shí),稱之為“倍根方程”.如果關(guān)于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.16.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點(diǎn)B的坐標(biāo)為B(),D是AB邊上的一點(diǎn).將△ADO沿直線OD翻折,使A點(diǎn)恰好落在對(duì)角線OB上的點(diǎn)E處,若點(diǎn)E在一反比例函數(shù)的圖像上,那么k的值是_______三、解答題(共8題,共72分)17.(8分)數(shù)學(xué)興趣小組為了研究中小學(xué)男生身高y(cm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計(jì)的中小學(xué)男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標(biāo)系中描出了表中數(shù)據(jù)對(duì)應(yīng)的點(diǎn),并發(fā)現(xiàn)前5個(gè)點(diǎn)大致位于直線AB上,后7個(gè)點(diǎn)大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學(xué)生的平均身高從歲開始增加特別迅速.(2)求直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式.(3)直接寫出直線CD所對(duì)應(yīng)的函數(shù)表達(dá)式,假設(shè)17歲后該市男生身高增長速度大致符合直線CD所對(duì)應(yīng)的函數(shù)關(guān)系,請(qǐng)你預(yù)測該市18歲男生年齡組的平均身高大約是多少?18.(8分)如圖,在直角坐標(biāo)系中△ABC的A、B、C三點(diǎn)坐標(biāo)A(7,1)、B(8,2)、C(9,0).(1)請(qǐng)?jiān)趫D中畫出△ABC的一個(gè)以點(diǎn)P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點(diǎn)一側(cè)),畫出△A′B′C′關(guān)于y軸對(duì)稱的△A′'B′'C′';(2)寫出點(diǎn)A'的坐標(biāo).19.(8分)已知,如圖,是的平分線,,點(diǎn)在上,,,垂足分別是、.試說明:.20.(8分)如圖,已知正方形ABCD的邊長為4,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn),連接CP,過點(diǎn)P作PC的垂線交AD于點(diǎn)E,以PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上,對(duì)角線EG、PF相交于點(diǎn)O.(1)若AP=1,則AE=;(2)①求證:點(diǎn)O一定在△APE的外接圓上;②當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)O也隨之運(yùn)動(dòng),求點(diǎn)O經(jīng)過的路徑長;(3)在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)過程中,△APE的外接圓的圓心也隨之運(yùn)動(dòng),求該圓心到AB邊的距離的最大值.21.(8分)先化簡,再求值:(),其中=22.(10分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個(gè)輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.23.(12分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.24.如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時(shí),求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),⊙O與Rt△ABC的一邊相切,求t的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點(diǎn)T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M(jìn)是OP的中點(diǎn),∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.2、A【解析】
根據(jù)分子為零,且分母不為零解答即可.【詳解】解:∵代數(shù)式的值為零,∴x=0,此時(shí)分母x-3≠0,符合題意.故選A.【點(diǎn)睛】本題考查了分式的值為零的條件.若分式的值為零,需同時(shí)具備兩個(gè)條件:①分子的值為0,②分母的值不為0,這兩個(gè)條件缺一不可.3、B【解析】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因?yàn)橄褽F∥AB所以O(shè)C垂直EF故∠OEF=30°所以EF=OE=2.4、B【解析】y=3x的圖象經(jīng)過一三象限過原點(diǎn)的直線,y隨x的增大而增大,故選項(xiàng)A錯(cuò)誤;y=的圖象在一、三象限,在每個(gè)象限內(nèi)y隨x的增大而減小,故選項(xiàng)B正確;y=?的圖象在二、四象限,故選項(xiàng)C錯(cuò)誤;y=x2的圖象是頂點(diǎn)在原點(diǎn)開口向上的拋物線,在一、二象限,故選項(xiàng)D錯(cuò)誤;故選B.5、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.6、A【解析】
可設(shè)其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設(shè)S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點(diǎn)睛】本題考查了因式分解的應(yīng)用;設(shè)出和為S,并求出2S進(jìn)行做差求解是解題關(guān)鍵.7、B【解析】
設(shè)可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點(diǎn)睛】本題考查的是一元一次不等式的應(yīng)用,解此類題目時(shí)注意利潤和折數(shù),計(jì)算折數(shù)時(shí)注意要除以2.解答本題的關(guān)鍵是讀懂題意,求出打折之后的利潤,根據(jù)利潤率不低于5%,列不等式求解.8、A【解析】
關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征是縱坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點(diǎn)M(1,2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)為(-1,2)【點(diǎn)睛】本題考查關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)特征,牢記關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的性質(zhì)是解題的關(guān)鍵.9、B【解析】試題分析:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是中心對(duì)稱圖形,故本選項(xiàng)正確;C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選B.【考點(diǎn)】中心對(duì)稱圖形.10、D【解析】
分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進(jìn)而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點(diǎn)睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計(jì)算方法.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、10【解析】
由正方形性質(zhì)的得出B、D關(guān)于AC對(duì)稱,根據(jù)兩點(diǎn)之間線段最短可知,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小,進(jìn)而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對(duì)稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.12、【解析】
過點(diǎn)作于,根據(jù)三角形的性質(zhì)及三角形內(nèi)角和定理可計(jì)算再由旋轉(zhuǎn)可得,,根據(jù)三角形外角和性質(zhì)計(jì)算,根據(jù)含角的直角三角形的三邊關(guān)系得和的長度,進(jìn)而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點(diǎn)作于,∵,∴.∵將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在點(diǎn)處,此時(shí)點(diǎn)落在點(diǎn)處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點(diǎn)睛】本題考查三角形性質(zhì)的綜合應(yīng)用,要熟練掌握等腰三角形的性質(zhì),含角的直角三角形的三邊關(guān)系,旋轉(zhuǎn)圖形的性質(zhì).13、【解析】
如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.14、2【解析】
解:這組數(shù)據(jù)的平均數(shù)為2,
有(2+2+0-2+x+2)=2,
可求得x=2.
將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個(gè)數(shù)是2與2,
其平均數(shù)即中位數(shù)是(2+2)÷2=2.
故答案是:2.15、-1或-4【解析】分析:設(shè)“倍根方程”的一個(gè)根為,則另一根為,由一元二次方程根與系數(shù)的關(guān)系可得,由此可列出關(guān)于m的方程,解方程即可求得m的值.詳解:由題意設(shè)“倍根方程”的一個(gè)根為,另一根為,則由一元二次方程根與系數(shù)的關(guān)系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點(diǎn)睛:本題解題的關(guān)鍵是熟悉一元二次方程根與系數(shù)的關(guān)系:若一元二次方程的兩根分別為,則.16、-12【解析】過E點(diǎn)作EF⊥OC于F,如圖所示:
由條件可知:OE=OA=5,,所以EF=3,OF=4,
則E點(diǎn)坐標(biāo)為(-4,3)
設(shè)反比例函數(shù)的解析式是y=,則有k=-4×3=-12.故答案是:-12.三、解答題(共8題,共72分)17、(1)11;(2)y=3.6x+90;(3)該市18歲男生年齡組的平均身高大約是174cm左右.【解析】
(1)根據(jù)統(tǒng)計(jì)圖仔細(xì)觀察即可得出結(jié)果(2)先設(shè)函數(shù)表達(dá)式,選取兩個(gè)點(diǎn)帶入求值即可(3)先設(shè)函數(shù)表達(dá)式,選取兩個(gè)點(diǎn)帶入求值,把帶入預(yù)測即可.【詳解】解:(1)由統(tǒng)計(jì)圖可得,該市男學(xué)生的平均身高從11歲開始增加特別迅速,故答案為:11;(2)設(shè)直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式∵圖象經(jīng)過點(diǎn)則,解得.即直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式:(3)設(shè)直線CD所對(duì)應(yīng)的函數(shù)表達(dá)式為:,,得,即直線CD所對(duì)應(yīng)的函數(shù)表達(dá)式為:把代入得即該市18歲男生年齡組的平均身高大約是174cm左右.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)統(tǒng)計(jì)圖和一次函數(shù)的應(yīng)用,熟練掌握一次函數(shù)表達(dá)式的求法是解題的關(guān)鍵.18、(1)見解析;(2)點(diǎn)A'的坐標(biāo)為(-3,3)【解析】
解:(1),△A′'B′'C′'如圖所示.(2)點(diǎn)A'的坐標(biāo)為(-3,3).19、見詳解【解析】
根據(jù)角平分線的定義可得∠ABD=∠CBD,然后利用“邊角邊”證明△ABD和△CBD全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADB=∠CDB,然后根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等證明即可.【詳解】證明:∵BD為∠ABC的平分線,
∴∠ABD=∠CBD,
在△ABD和△CBD中,∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵點(diǎn)P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.【點(diǎn)睛】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),全等三角形的判定與性質(zhì),確定出全等三角形并得到∠ADB=∠CDB是解題的關(guān)鍵.20、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對(duì)應(yīng)邊成比例即可求出AE的長;(2)①A、P、O、E四點(diǎn)共圓,即可得出結(jié)論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點(diǎn)O在AC上,當(dāng)P運(yùn)動(dòng)到點(diǎn)B時(shí),O為AC(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設(shè)AP=x,則BP=4﹣x,由相似三角形的對(duì)應(yīng)邊成比例求出AE的表達(dá)式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點(diǎn)共圓,∴點(diǎn)O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點(diǎn)共圓,∴∠OAP=∠OEP=45°,∴點(diǎn)O在AC上,當(dāng)P運(yùn)動(dòng)到點(diǎn)B時(shí),O為AC的中點(diǎn),OA=12AC=2即點(diǎn)O經(jīng)過的路徑長為22(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵M(jìn)E=MP,∴AN=PN,∴MN=12AE設(shè)AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時(shí),AE的最大值為1,此時(shí)MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【點(diǎn)睛】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關(guān)鍵.21、【解析】分析:首先將括號(hào)里面的分式進(jìn)行通分,然后將分式的分子和分母進(jìn)行因式分解,然后將除法改成乘法進(jìn)行約分化簡,最后將a的值代入化簡后的式子得出答案.詳解:原式=將原式=點(diǎn)睛:本題主要考查的是分式的化簡求值,屬于簡單題型.解決這個(gè)問題的關(guān)鍵就是就是將括號(hào)里面的分式進(jìn)行化成同分母.22、這個(gè)圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計(jì)算.解答:解:如圖,OE⊥AB交AB于點(diǎn)D,則DE=4,AB=16,AD=8,設(shè)半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.23、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點(diǎn),∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點(diǎn)睛:本題主要考查圓中的計(jì)算問題,解題的關(guān)鍵在于清楚角度的轉(zhuǎn)換方式和弦長的計(jì)算方法.24、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據(jù)t的值計(jì)算CQ和CP的長,由圖形可知△PC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新版承攬加工合同書范文
- 2025法人向公司借款合同
- 2025年度溫室大棚租賃與現(xiàn)代農(nóng)業(yè)技術(shù)合作合同3篇
- 2025年度農(nóng)村出租房租賃與農(nóng)村環(huán)保產(chǎn)業(yè)合作合同
- 二零二五年度電影宣傳推廣與營銷合同2篇
- 二零二五年度股權(quán)代持服務(wù)協(xié)議:涉及企業(yè)并購的綜合性協(xié)議3篇
- 二零二五年度農(nóng)村宅基地房屋租賃與農(nóng)村文化傳承合同
- 二零二五年度展臺(tái)搭建與展覽展示合同3篇
- 二零二五年度法人代表變更與股權(quán)收購協(xié)議3篇
- 2025年度液壓設(shè)備維修保養(yǎng)及安全檢測合同3篇
- 老年綜合評(píng)估知情同意書
- 會(huì)議籌備工作分工表
- 時(shí)間管理學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 2023火電機(jī)組深度調(diào)峰工況下的涉網(wǎng)性能技術(shù)要求
- 醫(yī)學(xué)英語術(shù)語解密-福建醫(yī)科大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 中國移動(dòng)呼叫中心的精細(xì)化管理
- 內(nèi)燃機(jī)車點(diǎn)檢方法探討
- 2023初一語文現(xiàn)代文閱讀理解及解析:《貓》
- 大四課件感染深部真菌病
- 《太上老君說五斗金章受生經(jīng)》
- 東南大學(xué)醫(yī)學(xué)三基考試外科選擇題及答案
評(píng)論
0/150
提交評(píng)論