版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
青海省海西重點(diǎn)名校2024屆中考數(shù)學(xué)最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果k<0,b>0,那么一次函數(shù)y=kx+b的圖象經(jīng)過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限2.在平面直角坐標(biāo)系內(nèi),點(diǎn)P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,4.計算的結(jié)果是()A.1 B.-1 C. D.5.已知點(diǎn)A(0,﹣4),B(8,0)和C(a,﹣a),若過點(diǎn)C的圓的圓心是線段AB的中點(diǎn),則這個圓的半徑的最小值是()A. B. C. D.26.將拋物線y=2x2向左平移3個單位得到的拋物線的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)27.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km8.如圖,C,B是線段AD上的兩點(diǎn),若,,則AC與CD的關(guān)系為()A. B. C. D.不能確定9.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標(biāo)軸有3個不同交點(diǎn);⑤邊長相等的多邊形內(nèi)角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.10.某品牌的飲水機(jī)接通電源就進(jìn)入自動程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機(jī)后用時(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘二、填空題(本大題共6個小題,每小題3分,共18分)11.分式與的最簡公分母是_____.12.如圖,在Rt△ABC中,∠C=90°,AC=8,BC=1.在邊AB上取一點(diǎn)O,使BO=BC,以點(diǎn)O為旋轉(zhuǎn)中心,把△ABC逆時針旋轉(zhuǎn)90°,得到△A′B′C′(點(diǎn)A、B、C的對應(yīng)點(diǎn)分別是點(diǎn)A′、B′、C′、),那么△ABC與△A′B′C′的重疊部分的面積是_________.13.函數(shù)中,自變量的取值范圍是______.14.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機(jī)抽取一張,抽到中心對稱圖形的概率是________.15.如圖,在正方形ABCD中,AD=5,點(diǎn)E,F(xiàn)是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=3,BE=DF=4,則EF的長為__________.16.我們知道:1+3=4,1+3+5=9,1+3+5+7=16,…,觀察下面的一列數(shù):-1,2,,-3,4,-5,6…,將這些數(shù)排列成如圖的形式,根據(jù)其規(guī)律猜想,第20行從左到右第3個數(shù)是.三、解答題(共8題,共72分)17.(8分)已知:如圖,在平行四邊形中,的平分線交于點(diǎn),過點(diǎn)作的垂線交于點(diǎn),交延長線于點(diǎn),連接,.求證:;若,,,求的長.18.(8分)計算:(﹣2)0++4cos30°﹣|﹣|.19.(8分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間的函數(shù)圖象如下圖所示.(1)求甲組加工零件的數(shù)量y與時間x之間的函數(shù)關(guān)系式.(2)求乙組加工零件總量a的值.20.(8分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0).繞點(diǎn)A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點(diǎn)D,交y軸于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點(diǎn)D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點(diǎn)E為直線l下方拋物線上的一點(diǎn),直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點(diǎn)P,其縱坐標(biāo)為4,點(diǎn)Q在拋物線上,當(dāng)直線l與y軸的交點(diǎn)C位于y軸負(fù)半軸時,是否存在以點(diǎn)A,D,P,Q為頂點(diǎn)的平行四邊形?若存在,請直接寫出點(diǎn)D的橫坐標(biāo);若不存在,請說明理由.21.(8分)如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點(diǎn)為A,過點(diǎn)P(1,m)作直線PA⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(點(diǎn)B、C不重合),連接CB、CP.(I)當(dāng)m=3時,求點(diǎn)A的坐標(biāo)及BC的長;(II)當(dāng)m>1時,連接CA,若CA⊥CP,求m的值;(III)過點(diǎn)P作PE⊥PC,且PE=PC,當(dāng)點(diǎn)E落在坐標(biāo)軸上時,求m的值,并確定相對應(yīng)的點(diǎn)E的坐標(biāo).22.(10分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?23.(12分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)M是第二象限內(nèi)拋物線上一點(diǎn),BM交y軸于N.(1)求點(diǎn)A、B的坐標(biāo);(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.24.如圖,AB為⊙O的直徑,點(diǎn)D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點(diǎn)D,已知點(diǎn)E是半圓弧AB上的動點(diǎn),點(diǎn)F是射線DC上的動點(diǎn),連接DE、AE,DE與AB交于點(diǎn)P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當(dāng)∠DAE=時,四邊形ADFP是菱形;②當(dāng)∠DAE=時,四邊形BFDP是正方形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)k、b的符號來求確定一次函數(shù)y=kx+b的圖象所經(jīng)過的象限.【詳解】∵k<0,
∴一次函數(shù)y=kx+b的圖象經(jīng)過第二、四象限.
又∵b>0時,
∴一次函數(shù)y=kx+b的圖象與y軸交與正半軸.
綜上所述,該一次函數(shù)圖象經(jīng)過第一、二、四象限.
故選D.【點(diǎn)睛】本題主要考查一次函數(shù)圖象在坐標(biāo)平面內(nèi)的位置與k、b的關(guān)系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點(diǎn);b<0時,直線與y軸負(fù)半軸相交.2、D【解析】
判斷出P的橫縱坐標(biāo)的符號,即可判斷出點(diǎn)P所在的相應(yīng)象限.【詳解】當(dāng)a為正數(shù)的時候,a+3一定為正數(shù),所以點(diǎn)P可能在第一象限,一定不在第四象限,
當(dāng)a為負(fù)數(shù)的時候,a+3可能為正數(shù),也可能為負(fù)數(shù),所以點(diǎn)P可能在第二象限,也可能在第三象限,
故選D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)的知識點(diǎn),解題的關(guān)鍵是由a的取值判斷出相應(yīng)的象限.3、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點(diǎn)睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運(yùn)用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.4、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點(diǎn)睛】此題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.5、B【解析】
首先求得AB的中點(diǎn)D的坐標(biāo),然后求得經(jīng)過點(diǎn)D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點(diǎn)坐標(biāo),再求得交點(diǎn)與D之間的距離即可.【詳解】AB的中點(diǎn)D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點(diǎn)的坐標(biāo)是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.6、C【解析】
按照“左加右減,上加下減”的規(guī)律,從而選出答案.【詳解】y=2x2向左平移3個單位得到的拋物線的解析式是y=2(x+3)2,故答案選C.【點(diǎn)睛】本題主要考查了拋物線的平移以及拋物線解析式的變換規(guī)律,解本題的要點(diǎn)在于熟知“左加右減,上加下減”的變化規(guī)律.7、B【解析】
正負(fù)數(shù)的應(yīng)用,先判斷向北、向南是不是具有相反意義的量,再用正負(fù)數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點(diǎn)睛】本題考查正負(fù)數(shù)在生活中的應(yīng)用.注意用正負(fù)數(shù)表示的量必須是具有相反意義的量.8、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【點(diǎn)睛】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運(yùn)用線段的和、差、倍轉(zhuǎn)化線段之間的數(shù)量關(guān)系是十分關(guān)鍵的一點(diǎn).9、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標(biāo)軸有2個不同交點(diǎn),故此選項錯誤;⑤邊長相等的多邊形內(nèi)角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.10、C【解析】
先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3a2b【解析】
利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點(diǎn)睛】本題考查最簡公分母,解題的關(guān)鍵是掌握求最簡公分母的方法.12、【解析】
先求得OD,AE,DE的值,再利用S四邊形ODEF=S△AOF-S△ADE即可.【詳解】如圖,OA’=OA=4,則OD=OA’=3,OD=3∴AD=1,可得DE=,AE=∴S四邊形ODEF=S△AOF-S△ADE=×3×4-××=.故答案為.【點(diǎn)睛】本題考查的知識點(diǎn)是三角形的旋轉(zhuǎn),解題的關(guān)鍵是熟練的掌握三角形的旋轉(zhuǎn).13、【解析】
根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【點(diǎn)睛】本題主要考查自變量得取值范圍的知識點(diǎn),當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為2.14、【解析】
在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機(jī)抽取一張,抽到中心對稱圖形的概率為:.故答案為.15、【解析】分析:延長AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點(diǎn)睛:本題考查了正方形的性質(zhì),關(guān)鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計算.16、2【解析】
先求出19行有多少個數(shù),再加3就等于第20行第三個數(shù)是多少.然后根據(jù)奇偶性來決定負(fù)正.【詳解】∵1行1個數(shù),2行3個數(shù),3行5個數(shù),4行7個數(shù),…19行應(yīng)有2×19-1=37個數(shù)∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3個數(shù)的絕對值是1+3=2.又2是偶數(shù),故第20行第3個數(shù)是2.三、解答題(共8題,共72分)17、(1)詳見解析;(2)【解析】
(1)根據(jù)題意平分可得,從而證明即可解答(2)由(1)可知,再根據(jù)四邊形是平行四邊形可得,過點(diǎn)作延長線于點(diǎn),再根據(jù)勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點(diǎn)作延長線于點(diǎn).在中,【點(diǎn)睛】此題考查三角形全等的判定與性質(zhì),勾股定理,平行四邊形的性質(zhì),解題關(guān)鍵在于作好輔助線18、1【解析】分析:按照實數(shù)的運(yùn)算順序進(jìn)行運(yùn)算即可.詳解:原式=1.點(diǎn)睛:本題考查實數(shù)的運(yùn)算,主要考查零次冪,負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及二次根式,熟練掌握各個知識點(diǎn)是解題的關(guān)鍵.19、(1)y=60x;(2)300【解析】
(1)由題圖可知,甲組的y是x的正比例函數(shù).設(shè)甲組加工的零件數(shù)量y與時間x的函數(shù)關(guān)系式為y=kx.根據(jù)題意,得6k=360,解得k=60.所以,甲組加工的零件數(shù)量y與時間x之間的關(guān)系式為y=60x.(2)當(dāng)x=2時,y=100.因為更換設(shè)備后,乙組工作效率是原來的2倍.所以,解得a=300.20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時,最大值為;(4)存在,點(diǎn)D的橫坐標(biāo)為﹣3或或﹣.【解析】
(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過點(diǎn)D作DF⊥x軸交于點(diǎn)F,過點(diǎn)E作y軸的平行線交直線AD于點(diǎn)M,∵OC∥DF,∴OF=5OA=5,故點(diǎn)D的坐標(biāo)為(﹣5,6),將點(diǎn)A、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:即直線AD的表達(dá)式為:y=﹣x+1,(3)設(shè)點(diǎn)E坐標(biāo)為則點(diǎn)M坐標(biāo)為則∵故S△ACE有最大值,當(dāng)x=﹣2時,最大值為;(4)存在,理由:①當(dāng)AP為平行四邊形的一條邊時,如下圖,設(shè)點(diǎn)D的坐標(biāo)為將點(diǎn)A向左平移2個單位、向上平移4個單位到達(dá)點(diǎn)P的位置,同樣把點(diǎn)D左平移2個單位、向上平移4個單位到達(dá)點(diǎn)Q的位置,則點(diǎn)Q的坐標(biāo)為將點(diǎn)Q的坐標(biāo)代入①式并解得:②當(dāng)AP為平行四邊形的對角線時,如下圖,設(shè)點(diǎn)Q坐標(biāo)為點(diǎn)D的坐標(biāo)為(m,n),AP中點(diǎn)的坐標(biāo)為(0,2),該點(diǎn)也是DQ的中點(diǎn),則:即:將點(diǎn)D坐標(biāo)代入①式并解得:故點(diǎn)D的橫坐標(biāo)為:或或.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點(diǎn)的坐標(biāo),本題難度大.21、(I)4;(II)(III)(2,0)或(0,4)【解析】
(I)當(dāng)m=3時,拋物線解析式為y=-x2+6x,解方程-x2+6x=0得A(6,0),利用對稱性得到C(5,5),從而得到BC的長;(II)解方程-x2+2mx=0得A(2m,0),利用對稱性得到C(2m-1,2m-1),再根據(jù)勾股定理和兩點(diǎn)間的距離公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如圖,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,則根據(jù)P點(diǎn)坐標(biāo)得到2m-2=m,解得m=2,再計算出ME=1得到此時E點(diǎn)坐標(biāo);作PH⊥y軸于H,如圖,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后計算出HE′得到E′點(diǎn)坐標(biāo).【詳解】解:(I)當(dāng)m=3時,拋物線解析式為y=﹣x2+6x,當(dāng)y=0時,﹣x2+6x=0,解得x1=0,x2=6,則A(6,0),拋物線的對稱軸為直線x=3,∵P(1,3),∴B(1,5),∵點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C∴C(5,5),∴BC=5﹣1=4;(II)當(dāng)y=0時,﹣x2+2mx=0,解得x1=0,x2=2m,則A(2m,0),B(1,2m﹣1),∵點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C,而拋物線的對稱軸為直線x=m,∴C(2m﹣1,2m﹣1),∵PC⊥PA,∴PC2+AC2=PA2,∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,整理得2m2﹣5m+3=0,解得m1=1,m2=,即m的值為;(III)如圖,∵PE⊥PC,PE=PC,∴△PME≌△CBP,∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,而P(1,m)∴2m﹣2=m,解得m=2,∴ME=m﹣1=1,∴E(2,0);作PH⊥y軸于H,如圖,易得△PHE′≌△PBC,∴PH=PB=m﹣1,HE′=BC=2m﹣2,而P(1,m)∴m﹣1=1,解得m=2,∴HE′=2m﹣2=2,∴E′(0,4);綜上所述,m的值為2,點(diǎn)E的坐標(biāo)為(2,0)或(0,4).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì);會運(yùn)用全等三角形的知識解決線段相等的問題;理解坐標(biāo)與圖形性質(zhì),記住兩點(diǎn)間的距離公式.22、(1)80,20,72;(2)16,補(bǔ)圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總?cè)藬?shù),再用總?cè)藬?shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總?cè)藬?shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計圖即可.(3)設(shè)原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補(bǔ)全統(tǒng)計圖如圖所示;(3)設(shè)原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點(diǎn):1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.頻數(shù)、頻率和總量的關(guān)系;4.一元一次不等式的應(yīng)用.23、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)設(shè)y=0,可求x的值,即求A,B的坐標(biāo);(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點(diǎn)坐標(biāo),可得ON的長度,根據(jù)S△BMC=,可求a的值;(3)過M點(diǎn)作ME∥AB,設(shè)NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點(diǎn)坐標(biāo),代入可得k,m,a的關(guān)系式,由CO=2km+m=-12a,可得方程組,解得k,即可求結(jié)果.【詳解】(1)設(shè)y=0,則0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如圖1,作MD⊥x軸,∵M(jìn)D⊥x軸,OC⊥x軸,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年設(shè)備監(jiān)理師考試題庫含答案【預(yù)熱題】
- 家政服務(wù)衛(wèi)生安全規(guī)定
- 花藝圓形花束課程設(shè)計
- 電子行業(yè)產(chǎn)品知識培訓(xùn)總結(jié)
- 項目立項申請計劃
- 文化藝術(shù)行業(yè)市場總結(jié)
- 銷售業(yè)績評估方法培訓(xùn)
- 青少年法治教育工作安排計劃
- 出版合同范本(2篇)
- 2024施工安全生產(chǎn)承諾書范文(34篇)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之21:“7支持-7.5成文信息”(雷澤佳編制-2025B0)
- 2024年度大數(shù)據(jù)支撐下的B2B電子商務(wù)購銷服務(wù)合同3篇
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測試語文試卷(含答案)
- 2023-2024年電商直播行業(yè)現(xiàn)狀及發(fā)展趨勢研究報告
- 中央2024年市場監(jiān)管總局直屬事業(yè)單位招聘中層干部歷年參考題庫(頻考版)含答案解析
- 【9歷期末】安徽省利辛縣部分學(xué)校2023~2024學(xué)年九年級上學(xué)期期末考試歷史試卷
- GB/T 44949-2024智能熱沖壓成形生產(chǎn)線
- 阜陽市重點(diǎn)中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷含解析
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報
- 2024-2025學(xué)年統(tǒng)編版七年級語文上學(xué)期期末真題復(fù)習(xí) 專題01 古詩文名篇名句默寫
- 2024-2030年中國企業(yè)大學(xué)建設(shè)行業(yè)轉(zhuǎn)型升級模式及投資規(guī)劃分析報告
評論
0/150
提交評論