版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省樂德州市夏津縣重點達標名校2022年中考數(shù)學考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.估計+1的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間2.下面說法正確的個數(shù)有()①如果三角形三個內角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內角等于另兩個內角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個3.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.24.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.5.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.6.用配方法解方程時,可將方程變形為()A. B. C. D.7.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.8.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學生人數(shù)(名)12863則關于這20名學生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.349.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.110.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數(shù)是()A.4個 B.3個 C.2個 D.1個二、填空題(共7小題,每小題3分,滿分21分)11.方程組的解是________.12.分解因式:=_______.13.若函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點,則常數(shù)m的值是.14.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內接多邊形,則∠BOM=_______.15.如圖,⊙O在△ABC三邊上截得的弦長相等,∠A=70°,則∠BOC=_____度.16.一個布袋中裝有1個藍色球和2個紅色球,這些球除顏色外其余都相同,隨機摸出一個球后放回搖勻,再隨機摸出一個球,則兩次摸出的球都是紅球的概率是_____.17.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉中心順時針旋轉后得到ΔA′B′C′,且點A在A′B′上,則旋轉角為________________°.三、解答題(共7小題,滿分69分)18.(10分)如圖,在□ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長.19.(5分)為支持農村經濟建設,某玉米種子公司對某種種子的銷售價格規(guī)定如下:每千克的價格為a元,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折,某農戶對購買量和付款金額這兩個變量的對應關系用列表做了分析,并繪制出了函數(shù)圖象,如圖所示,其中函數(shù)圖象中A點的左邊為(2,10),請你結合表格和圖象,回答問題:購買量x(千克)11.522.53付款金額y(元)a7.51012b(1)由表格得:a=;b=;(2)求y關于x的函數(shù)解析式;(3)已知甲農戶將8元錢全部用于購買該玉米種子,乙農戶購買4千克該玉米種子,如果他們兩人合起來購買,可以比分開購買節(jié)約多少錢?20.(8分)先化簡,然后從﹣<x<的范圍內選取一個合適的整數(shù)作為x的值代入求值.21.(10分)如圖,已知在中,,是的平分線.(1)作一個使它經過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關系,并說明理由.22.(10分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.23.(12分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)請連結,并求出的面積;(3)直接寫出當時,的解集.24.(14分)在某校舉辦的2012年秋季運動會結束之后,學校需要為參加運動會的同學們發(fā)紀念品.小王負責到某商場買某種紀念品,該商場規(guī)定:一次性購買該紀念品200個以上可以按折扣價出售;購買200個以下(包括200個)只能按原價出售.小王若按照原計劃的數(shù)量購買紀念品,只能按原價付款,共需要1050元;若多買35個,則按折扣價付款,恰好共需1050元.設小王按原計劃購買紀念品x個.(1)求x的范圍;(2)如果按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同,那么小王原計劃購買多少個紀念品?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:直接利用2<<3,進而得出答案.詳解:∵2<<3,∴3<+1<4,故選B.點睛:此題主要考查了估算無理數(shù)的大小,正確得出的取值范圍是解題關鍵.2、C【解析】試題分析:①∵三角形三個內角的比是1:2:3,∴設三角形的三個內角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內角之和,三角形的一個內角等于另兩個內角之差,∴三角形一個內角也等于另外兩個內角的和,∴這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內角之和,又一個內角也等于另外兩個內角的和,由此可知這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內角和定理;2.三角形的外角性質.3、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.4、D【解析】
找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;
左視圖有二列,從左往右分別有2,1個正方形;
俯視圖有三列,從上往下分別有3,1個正方形,
故選A.【點睛】本題考查了三視圖的知識,關鍵是掌握三視圖所看的位置.掌握定義是關鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關鍵.5、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.6、D【解析】
配方法一般步驟:將常數(shù)項移到等號右側,左右兩邊同時加一次項系數(shù)一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.7、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.8、B【解析】
A、根據眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據中位數(shù)的定義將這組數(shù)據從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據加權平均數(shù)公式代入計算可得;D、根據方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數(shù)是第10個和第11個學生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數(shù);中位數(shù);眾數(shù).9、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.10、B【解析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉化為函數(shù)圖象交點問題,利用拋物線頂點證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數(shù)根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關系、拋物線對稱性和最值,以及用函數(shù)的觀點解決方程或不等式.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
利用加減消元法進行消元求解即可【詳解】解:由①+②,得3x=6x=2把x=2代入①,得2+3y=5y=1所以原方程組的解為:故答案為:【點睛】本題考查了二元一次方程組的解法,用適當?shù)姆椒ń舛淮畏匠探M是解題的關鍵.12、.【解析】
將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【詳解】直接提取公因式即可:.13、0或1【解析】分析:需要分類討論:①若m=0,則函數(shù)y=2x+1是一次函數(shù),與x軸只有一個交點;②若m≠0,則函數(shù)y=mx2+2x+1是二次函數(shù),根據題意得:△=4﹣4m=0,解得:m=1?!喈攎=0或m=1時,函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點。14、48°【解析】
連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.15、125【解析】
解:過O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分別為M,N,P∵∠A=70°,∠B+∠C=180°?∠A=110°∵O在△ABC三邊上截得的弦長相等,∴OM=ON=OP,∴O是∠B,∠C平分線的交點∴∠BOC=180°?12(∠B+∠C)=180°?12×110°=125°.故答案為:125°【點睛】本題考查了圓心角、弧、弦的關系,三角形內角和定理,角平分線的性質,解題的關鍵是掌握它們的性質和定理.16、【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【詳解】畫樹狀圖得:∵共有9種等可能的結果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【點睛】本題主要考查了求隨機事件概率的方法,解本題的要點在于根據題意畫出樹狀圖,從而求出答案.17、50度【解析】
由將△ACB繞點C順時針旋轉得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉的性質、直角三角形的性質以及等腰三角形的性質.此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數(shù)形結合思想的應用.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)4-3【解析】試題分析:(1)根據等邊三角形的性質,可得EO⊥AC,即BD⊥AC,根據平行四邊形的對角線互相垂直可證菱形,(2)根據平行四邊形的對角線互相平分可得AO=CO,BO=DO,再根據△EAC是等邊三角形可以判定EO⊥AC,并求出EA的長度,然后在Rt△ABO中,利用勾股定理列式求出BO的長度,即DO的長度,在Rt△AOE中,根據勾股定理列式求出EO的長度,再根據ED=EO-DO計算即可得解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AO=CO,DO=BO,∵△EAC是等邊三角形,EO是AC邊上中線,∴EO⊥AC,即BD⊥AC,∴平行四邊形ABCD是是菱形.(2)∵平行四邊形ABCD是是菱形,∴AO=CO==4,DO=BO,∵△EAC是等邊三角形,∴EA=AC=8,EO⊥AC,在Rt△ABO中,由勾股定理可得:BO=3,∴DO=BO=3,在Rt△EAO中,由勾股定理可得:EO=4∴ED=EO-DO=4-3.19、(1)5,1(2)當0<x≤2時,y=5x,當x>2時,y關于x的函數(shù)解析式為y=4x+2(3)1.6元.【解析】
(1)結合函數(shù)圖象與表格即可得出購買量為函數(shù)的自變量,再根據購買2千克花了10元錢即可得出a值,結合超過2千克部分的種子價格打8折可得出b值;(2)分段函數(shù),當0≤x≤2時,設線段OA的解析式為y=kx;當x>2時,設關系式為y=k1x+b,然后將(2,10),且x=3時,y=1,代入關系式即可求出k,b的值,從而確定關系式;(3)代入(2)的解析式即可解答.【詳解】解:(1)結合函數(shù)圖象以及表格即可得出購買量是函數(shù)的自變量x,∵10÷2=5,∴a=5,b=2×5+5×0.8=1.故答案為a=5,b=1.(2)當0≤x≤2時,設線段OA的解析式為y=kx,∵y=kx的圖象經過(2,10),∴2k=10,解得k=5,∴y=5x;當x>2時,設y與x的函數(shù)關系式為:y=x+b∵y=kx+b的圖象經過點(2,10),且x=3時,y=1,,解得,∴當x>2時,y與x的函數(shù)關系式為:y=4x+2.∴y關于x的函數(shù)解析式為:;(3)甲農戶將8元錢全部用于購買該玉米種子,即5x=8,解得x=1.6,即甲農戶購買玉米種子1.6千克;如果他們兩人合起來購買,共購買玉米種子(1.6+4)=5.6千克,這時總費用為:y=4×5.6+2=24.4元.(8+4×4+2)?24.4=1.6(元).答:如果他們兩人合起來購買,可以比分開購買節(jié)約1.6元.【點睛】本題主要考查了一次函數(shù)的應用和待定系數(shù)法求一次函數(shù)解析式,根據已知得出圖表中點的坐標是解題的關鍵.注意:求正比例函數(shù),只要一對x,y的值就可以;而求一次函數(shù)y=kx+b,則需要兩組x,y的值.20、【解析】
根據分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內選取一個使得原分式有意義的整數(shù)作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當x=﹣2時,原式=.【點睛】本題考查分式的化簡求值、估算無理數(shù)的大小,解答本題的關鍵是明確分式化簡求值的方法.21、(1)見解析;(2)與相切,理由見解析.【解析】
(1)作出AD的垂直平分線,交AB于點O,進而利用AO為半徑求出即可;
(2)利用半徑相等結合角平分線的性質得出OD∥AC,進而求出OD⊥BC,進而得出答案.【詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點和,②作直線,與相交于點,③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【點睛】本題主要考查了切線的判定以及線段垂直平分線的作法與性質等知識,掌握切線的判定方法是解題關鍵.22、(1)見解析;(2)見解析;(3)AB=1【解析】
(1)由垂徑定理得出∠CPB=∠BCD,根據∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據此可得2∠APG=∠F,據此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 傅雷家書讀后感(匯編15篇)
- 教育工作者個人先進事跡(9篇)
- 誠信演講稿合集6篇
- DB12T 443-2011 采暖期室內溫度測量方法
- 中秋節(jié)活動主持詞(6篇)
- 誠信考試承諾書范文集錦5篇
- 新學期工作學習計劃4篇范文
- 科技創(chuàng)新:推動綠色交通與城市規(guī)劃綠色融合
- 明星課件教學課件
- 文書模板-未履行合同義務索賠函
- 市政工程變更流程資料表格附件
- 課程設計——夾套反應釜
- 調節(jié)池施工方案范文
- 專項施工方案編制依據
- 正比例函數(shù)的圖象與性質說課稿
- 施工單位履約后評價報告(共2頁)
- 《生活中的度量衡》PPT課件.ppt
- 趣味數(shù)學推理小故事PPT精品文檔
- Excel支票打印模板2021
- 《危險游戲莫玩?!稰PT課件.ppt
- 自-銑削用量進給量進給速度(精編版)
評論
0/150
提交評論