版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省曲阜市實驗中學2023-2024學年中考聯考數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內角和是180°D.拋一枚硬幣,落地后正面朝上2.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.3.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調查C.若甲組數據的標準差S甲=0.31,乙組數據的標準差S乙=0.25,則乙組數據比甲組數據穩(wěn)定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件4.把不等式組的解集表示在數軸上,正確的是()A. B.C. D.5.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(k≠0)的圖象經過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上.6.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數是()A.15° B.22.5° C.30° D.45°7.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.68.如圖,在△ABC中,∠ACB=90°,點D為AB的中點,AC=3,cosA=,將△DAC沿著CD折疊后,點A落在點E處,則BE的長為()A.5 B.4 C.7 D.59.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.10.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.甲、乙兩人5次射擊命中的環(huán)數分別為,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,則這兩人5次射擊命中的環(huán)數的方差S甲2_____S乙2(填“>”“<”或“=”).12.如圖,已知圓O的半徑為2,A是圓上一定點,B是OA的中點,E是圓上一動點,以BE為邊作正方形BEFG(B、E、F、G四點按逆時針順序排列),當點E繞⊙O圓周旋轉時,點F的運動軌跡是_________圖形13.圖,A,B是反比例函數y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.14.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.15.圓錐的底面半徑為3,母線長為5,該圓錐的側面積為_______.16.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點D,如果EF=8,AD=2,則⊙O半徑的長是_____.17.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.19.(5分)先化簡,,其中x=.20.(8分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).21.(10分)如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.22.(10分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結果保留根號和π)23.(12分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內分別裝入標有數字1,2,3,4的四個和標有數字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于5,那么小王去,否則就是小李去.用樹狀圖或列表法求出小王去的概率;小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.24.(14分)(1)計算:(a-b)2-a(a-2b);(2)解方程:=.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:必然事件就是一定發(fā)生的事件,依據定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、A【解析】
設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.3、A【解析】試題分析:根據抽樣調查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調查,故正確;C、標準差反映了一組數據的波動情況,標準差越小,數據越穩(wěn)定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調查與抽樣調查;3.標準差;4.隨機事件.4、A【解析】
分別求出各個不等式的解集,再求出這些解集的公共部分并在數軸上表示出來即可.【詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數軸上表示為:
.
故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.5、B【解析】
先根據平行四邊形的性質得到點的坐標,再代入反比例函數(k≠0)求出其解析式,再根據反比例函數的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(k≠0)的圖象經過點,,反比例函數解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)?,在反比例函數圖象上,故正確;因為反比例函數的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質和反比例函數的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.6、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.7、C【解析】試題解析:∵am=2,an=3,
∴a3m+2n
=a3m?a2n
=(am)3?(an)2
=23×32
=8×9
=1.故選C.8、C【解析】
連接AE,根據余弦的定義求出AB,根據勾股定理求出BC,根據直角三角形的性質求出CD,根據面積公式出去AE,根據翻轉變換的性質求出AF,根據勾股定理、三角形中位線定理計算即可.【詳解】解:連接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,點D為AB的中點,∴CD=AB=,S△ABC=×3×6=9,∵點D為AB的中點,∴S△ACD=S△ABC=,由翻轉變換的性質可知,S四邊形ACED=9,AE⊥CD,則×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故選C.【點睛】本題考查的是翻轉變換的性質、直角三角形的性質,翻轉變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.9、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.10、B【解析】
朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.二、填空題(共7小題,每小題3分,滿分21分)11、>【解析】
分別根據方差公式計算出甲、乙兩人的方差,再比較大?。驹斀狻俊?8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.故答案為:>.【點睛】本題考查了方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩(wěn)定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩(wěn)定.12、圓【解析】
根據題意作圖,即可得到點F的運動軌跡.【詳解】如圖,根據題意作下圖,可知F的運動軌跡為圓⊙O’.【點睛】此題主要考查動點的作圖問題,解題的關鍵是根據題意作出相應的圖形,方可判斷.13、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數系數k的幾何意義,以及運用待定系數法求反比例函數解析式,根據△AOD的面積為1列出關系式是解題的關鍵.14、【解析】
根據△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據直角三角形的性質即可求出△AEF的內切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可證:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
設M是△AEF的內心,過點M作MH⊥AE于H,
則根據圖1的結論得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內切圓、等邊三角形的性質、全等三角形的性質和判定,切線的性質,圓的切線長定理,根據已知得出AH的長是解題關鍵.15、15【解析】試題分析:利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式求解.圓錐的側面積=?2π?3?5=15π.故答案為15π.考點:圓錐的計算.16、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點:1.垂徑定理;2.解直角三角形.17、【解析】
設AC=x,則AB=2x,根據面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數的性質求得S△ABC取得最大值.【詳解】設AC=x,則AB=2x,根據面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,
故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數的性質,考查了計算能力,當涉及最值問題時,可考慮用函數的單調性和定義域等問題,屬于中檔題.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2.【解析】
(1)四邊形ABCD是平行四邊形,由平行四邊形的性質,可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點睛】此題考查平行四邊形的性質及判斷,考查菱形的判斷及性質,及解直角三角形,解題關鍵在于掌握判定定理和利用三角函數進行計算.19、【解析】
根據分式的化簡方法先通分再約分,然后帶入求值.【詳解】解:當時,.【點睛】此題重點考查學生對分式的化簡的應用,掌握分式的化簡方法是解題的關鍵.20、39米【解析】
過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.21、(1)見解析;(2)2【解析】
(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問題;(2)在Rt△ACF,根據AF=CF·tan∠ACF計算即可.【詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【點睛】本題主要考查三角形的性質及三角函數的相關知識,充分利用已知條件靈活運用各種方法求解可得到答案。22、(1)證明見解析(2)﹣6π【解析】
(1)直接利用切線的判定方法結合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年液壓電磁閥項目規(guī)劃申請報告模式
- 2025年Γ-FE2O3項目立項申請報告
- 2024-2025學年延安市宜川縣數學三年級第一學期期末調研試題含解析
- 2025年多協議通信適配器項目規(guī)劃申請報告模板
- 2024-2025學年夏邑縣三年級數學第一學期期末學業(yè)水平測試模擬試題含解析
- 2024-2025學年文山壯族苗族自治州丘北縣三年級數學第一學期期末復習檢測模擬試題含解析
- 2024-2025學年濰坊市寒亭區(qū)三上數學期末綜合測試模擬試題含解析
- 成都2024年四川成都市教育局所屬事業(yè)單位招聘高層次人才13人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 關于工程建筑實習報告合集九篇
- 員工工作自我鑒定15篇
- 中藥煎煮協議書
- 化學反應工程智慧樹知到期末考試答案章節(jié)答案2024年浙江工業(yè)大學
- 期末測試卷(試題)-2023-2024學年人教精通版英語五年級上冊
- 2024年高考語文閱讀之王愿堅小說專練(解析版)
- 2020年護理組織管理體系
- 六大茶類之紅茶
- 重癥感染和感染性休克治療新進展
- 國標《電力儲能用鋰離子電池監(jiān)造導則》
- 涉警網絡負面輿情應對與處置策略
- 5人小品《聚寶盆銀行》臺詞
- MOOC 健身健美-北京林業(yè)大學 中國大學慕課答案
評論
0/150
提交評論