版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市北辰區(qū)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-22.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH3.4的平方根是()A.4 B.±4 C.±2 D.24.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.55.實數(shù)的相反數(shù)是()A. B. C. D.6.某校決定從三名男生和兩名女生中選出兩名同學(xué)擔任校藝術(shù)節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.7.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.8.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.189.如圖所示的幾何體的主視圖是()A. B. C. D.10.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學(xué)記數(shù)法表示應(yīng)為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×103二、填空題(本大題共6個小題,每小題3分,共18分)11.將直線y=x沿y軸向上平移2個單位長度后,所得直線的函數(shù)表達式為_________,這兩條直線間的距離為_____.12.函數(shù)中自變量的取值范圍是______________13.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____14.因式分解:.15.已知二次函數(shù)中,函數(shù)y與x的部分對應(yīng)值如下:...-10123......105212...則當時,x的取值范圍是_________.16.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.18.(8分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設(shè)A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:PM+PB的長度最小值約為______cm.19.(8分)如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.(1)求證:AE=BF;(2)連接GB,EF,求證:GB∥EF;(3)若AE=1,EB=2,求DG的長.20.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設(shè)后房檐到地面的高度為米,前房檐到地面的高度米,求的值.21.(8分)先化簡代數(shù)式,再從范圍內(nèi)選取一個合適的整數(shù)作為的值代入求值。22.(10分)如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?23.(12分)某高校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.(1)這次被調(diào)查的同學(xué)共有名;(2)補全條形統(tǒng)計圖;(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù);(4)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費的食物可供多少人食用一餐?24.襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).m=,n=;求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A2、D【解析】
根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到正確的結(jié)論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等.3、C【解析】
根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.4、C【解析】
如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識點,通過作輔助線,結(jié)合圓周角定理得出相似三角形是解題關(guān)鍵.5、D【解析】
根據(jù)相反數(shù)的定義求解即可.【詳解】的相反數(shù)是-,故選D.【點睛】本題考查了實數(shù)的性質(zhì),在一個數(shù)的前面加上負號就是這個數(shù)的相反數(shù).6、B【解析】試題解析:列表如下:∴共有20種等可能的結(jié)果,P(一男一女)=.
故選B.7、C【解析】
根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.
當時,能判斷;C.
當時,不能判斷;D.
當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應(yīng)線段是解決此題的關(guān)鍵.8、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.9、A【解析】
找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.10、B【解析】試題分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).將13000用科學(xué)記數(shù)法表示為:1.3×1.故選B.考點:科學(xué)記數(shù)法—表示較大的數(shù)二、填空題(本大題共6個小題,每小題3分,共18分)11、y=x+1【解析】
已知直線y=x沿y軸向上平移1個單位長度,根據(jù)一次函數(shù)圖象的平移規(guī)律即可求得平移后的解析式為y=x+1.再利用等面積法求得這兩條直線間的距離即可.【詳解】∵直線y=x沿y軸向上平移1個單位長度,∴所得直線的函數(shù)關(guān)系式為:y=x+1.∴A(0,1),B(1,0),∴AB=1,過點O作OF⊥AB于點F,則AB?OF=OA?OB,∴OF=,即這兩條直線間的距離為.故答案為y=x+1,.【點睛】本題考查了一次函數(shù)圖象與幾何變換:一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象為直線,當直線平移時k不變,當向上平移m個單位,則平移后直線的解析式為y=kx+b+m.12、x≤2且x≠1【解析】
解:根據(jù)題意得:且x?1≠0,解得:且故答案為且13、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)14、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.15、0<x<4【解析】
根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結(jié)合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質(zhì),利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學(xué)們應(yīng)熟練掌握.16、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).三、解答題(共8題,共72分)17、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了弧長公式.18、(1)2.1;(2)見解析;(3)x=2時,函數(shù)有最小值y=4.2【解析】
(1)通過作輔助線,應(yīng)用三角函數(shù)可求得HM+HN的值即為x=2時,y的值;(2)可在網(wǎng)格圖中直接畫出函數(shù)圖象;(3)由函數(shù)圖象可知函數(shù)的最小值.【詳解】(1)當點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據(jù)函數(shù)圖象可知,當x=2時,函數(shù)有最小值y=4.2.故答案為:4.2.【點睛】本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.19、(1)詳見解析;(2)詳見解析;(3)910【解析】(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=12(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質(zhì)得到一對同位角相等,利用同位角相等兩直線平行即可得證;(3)由全等三角形對應(yīng)邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.(1)證明:連接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB為圓O的直徑,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)證明:連接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根據(jù)勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=22∵△DEF為等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF∵EF=5,∴DE=5×22∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE∴102?GE=2,即GE=2則GD=GE+ED=91020、【解析】
過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,
∵房子后坡度AB與前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.【點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握坡度坡角的概念.21、-2【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再選取使分式有意義的x的值代入計算可得.【詳解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合條件的x的值為x=2,則原式=-=-2.【點睛】此題考查分式的化簡求值,解題關(guān)鍵在于掌握運算法則.22、(1)小強的頭部點E與地面DK的距離約為144.5cm.(2)他應(yīng)向前9.5cm.【解析】試題分析:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.求出MF、FN的值即可解決問題;(2)求出OH、PH的值即可判斷;試題解析:解:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.∵EF+FG=166,F(xiàn)G=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此時小強頭部E點與地面DK相距約為144.5cm.(2)過點E作EP⊥AB于點P,延長OB交MN于H.∵AB=48,O為AB中點,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他應(yīng)向前9.5cm.23、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據(jù)沒有剩飯的人數(shù)是400人,所占的百分比是40%,據(jù)此即可求得調(diào)查的總?cè)藬?shù);(2)利用(1)中求得結(jié)果減去其它組的人數(shù)即可求得剩少量飯的人數(shù),從而補全直方圖;(3)利用360°乘以對應(yīng)的比例即可求解;(4)利用20000除以調(diào)查的總?cè)藬?shù),然后乘以200即可求解.試題解析:(1)被調(diào)查的同學(xué)的人數(shù)是400÷40%=1000(名);(2)剩少量的人數(shù)是1000-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年醫(yī)藥健康企業(yè)個人股份代持與轉(zhuǎn)讓合同3篇
- 2024年退役軍人住房保障協(xié)議3篇
- 2025版水箱產(chǎn)品售后服務(wù)滿意度調(diào)查協(xié)議3篇
- 2025年白山市教育資源租賃合同示范文本3篇
- 二零二五年度2讀招標投標與合同管理合同審查服務(wù)協(xié)議2篇
- 2025凈水工程施工合同
- 2024年綜合廠產(chǎn)權(quán)交易協(xié)議版B版
- 2024年簡化版進貨合同書范例版
- 2024年電子商務(wù)SET協(xié)議發(fā)展前景
- 2025年農(nóng)民工勞動保障:勞動合同簽訂與履行監(jiān)督指南
- Unit 2 How often do you exercise Section A 1a-2d 教學(xué)實錄 2024-2025學(xué)年人教版八年級英語上冊
- 2024年公路工程資料歸檔與承包合同3篇
- 2024-2025學(xué)年上學(xué)期杭州初中英語八年級期末試卷
- 法律邏輯學(xué)知到智慧樹章節(jié)測試課后答案2024年秋西南政法大學(xué)
- 山東省臨沂市2023-2024學(xué)年高二上學(xué)期期末學(xué)業(yè)水平檢測歷史試題 含答案
- 中考數(shù)學(xué)復(fù)習(xí)第二章方程(組)與不等式(組)第三節(jié)分式方程及其應(yīng)用課件
- 水肥一體化智能種植管理技術(shù)實施方案
- 《中華人民共和國學(xué)前教育法》專題培訓(xùn)
- 《房產(chǎn)稅法》課件
- 產(chǎn)品質(zhì)量培訓(xùn)
- 海洋氣象預(yù)測研究
評論
0/150
提交評論