鹽城市2024年中考數(shù)學(xué)仿真試卷含解析_第1頁
鹽城市2024年中考數(shù)學(xué)仿真試卷含解析_第2頁
鹽城市2024年中考數(shù)學(xué)仿真試卷含解析_第3頁
鹽城市2024年中考數(shù)學(xué)仿真試卷含解析_第4頁
鹽城市2024年中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

鹽城市2024年中考數(shù)學(xué)仿真試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在反比例函數(shù)的圖象的每一個(gè)分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<12.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.3.下列說法不正確的是()A.某種彩票中獎(jiǎng)的概率是,買1000張?jiān)摲N彩票一定會(huì)中獎(jiǎng)B.了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查C.若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S甲=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S乙=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定D.在一個(gè)裝有白球和綠球的袋中摸球,摸出黑球是不可能事件4.如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)M,N分別是∠AOB兩邊上的點(diǎn),點(diǎn)P關(guān)于OA的對稱點(diǎn)Q恰好落在線段MN上,點(diǎn)P關(guān)于OB的對稱點(diǎn)R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm5.如圖所示,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:36.-2的絕對值是()A.2 B.-2 C.±2 D.7.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個(gè)扇形,將留下的扇形圍成一個(gè)圓錐(接縫處不重疊),那么這個(gè)圓錐的高為A.6cm B.cm C.8cm D.cm8.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.89.若分式有意義,則的取值范圍是()A.; B.; C.; D..10.若kb<0,則一次函數(shù)的圖象一定經(jīng)過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限11.下列計(jì)算正確的是()A.(a)=a B.a(chǎn)+a=aC.(3a)?(2a)=6a D.3a﹣a=312.如圖,A、B、C是⊙O上的三點(diǎn),∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若一個(gè)多邊形的內(nèi)角和是900o,則這個(gè)多邊形是邊形.14.如圖所示,直線y=x+b交x軸A點(diǎn),交y軸于B點(diǎn),交雙曲線于P點(diǎn),連OP,則OP2﹣OA2=__.15.如圖,點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點(diǎn)D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.16.如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)(6,0),B的坐標(biāo)(0,8),點(diǎn)C的坐標(biāo)(﹣2,4),點(diǎn)M,N分別為四邊形OABC邊上的動(dòng)點(diǎn),動(dòng)點(diǎn)M從點(diǎn)O開始,以每秒1個(gè)單位長度的速度沿O→A→B路線向終點(diǎn)B勻速運(yùn)動(dòng),動(dòng)點(diǎn)N從O點(diǎn)開始,以每秒2個(gè)單位長度的速度沿O→C→B→A路線向終點(diǎn)A勻速運(yùn)動(dòng),點(diǎn)M,N同時(shí)從O點(diǎn)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當(dāng)t=3時(shí),S的值是_____.17.如圖,兩個(gè)三角形相似,AD=2,AE=3,EC=1,則BD=_____.18.如圖,正方形ABCD中,E為AB的中點(diǎn),AF⊥DE于點(diǎn)O,那么等于()A.; B.; C.; D..三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某水果基地計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤.甲乙丙每輛汽車能裝的數(shù)量(噸)423每噸水果可獲利潤(千元)574(1)用8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售,問裝運(yùn)乙、丙兩種水果的汽車各多少輛?(2)水果基地計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運(yùn)甲水果的汽車為m輛,則裝運(yùn)乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)(3)在(2)問的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤?最大利潤是多少?20.(6分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.21.(6分)校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道l上確定點(diǎn)D,使CD與l垂直,測得CD的長等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結(jié)果保留根號(hào));已知本路段對校車限速為45千米/小時(shí),若測得某輛校車從A到B用時(shí)1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)22.(8分)一個(gè)不透明的袋子中,裝有標(biāo)號(hào)分別為1、-1、2的三個(gè)小球,他們除標(biāo)號(hào)不同外,其余都完全相同;攪勻后,從中任意取一個(gè)球,標(biāo)號(hào)為正數(shù)的概率是;攪勻后,從中任取一個(gè)球,標(biāo)號(hào)記為k,然后放回?cái)噭蛟偃∫粋€(gè)球,標(biāo)號(hào)記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.23.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長;(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.24.(10分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點(diǎn),延長DE到點(diǎn)F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時(shí),求證:四邊形BCFE是菱形.25.(10分)如圖,某次中俄“海上聯(lián)合”反潛演習(xí)中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機(jī)B側(cè)得潛艇C的俯角為68°.試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度.(結(jié)果保留整數(shù).參考數(shù)據(jù):sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)26.(12分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點(diǎn)E作EG∥AC交CD的延長線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點(diǎn)M,若tanG=,AH=3,求EM的值.27.(12分)先化簡后求值:已知:x=﹣2,求的值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時(shí),在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點(diǎn)評】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.2、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據(jù)△DA′E∽△DAB知,據(jù)此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點(diǎn)睛:本題主要平移的性質(zhì),解題的關(guān)鍵是熟練掌握平移變換的性質(zhì)與三角形中線的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).3、A【解析】試題分析:根據(jù)抽樣調(diào)查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎(jiǎng)的概率是,只是一種可能性,買1000張?jiān)摲N彩票不一定會(huì)中獎(jiǎng),故錯(cuò)誤;B、調(diào)查電視機(jī)的使用壽命要?dú)碾娨暀C(jī),有破壞性,適合用抽樣調(diào)查,故正確;C、標(biāo)準(zhǔn)差反映了一組數(shù)據(jù)的波動(dòng)情況,標(biāo)準(zhǔn)差越小,數(shù)據(jù)越穩(wěn)定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點(diǎn):1.概率公式;2.全面調(diào)查與抽樣調(diào)查;3.標(biāo)準(zhǔn)差;4.隨機(jī)事件.4、A【解析】試題分析:利用軸對稱圖形的性質(zhì)得出PM=MQ,PN=NR,進(jìn)而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點(diǎn):軸對稱圖形的性質(zhì)5、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點(diǎn)上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點(diǎn)睛】本題考查的是圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.6、A【解析】

根據(jù)絕對值的性質(zhì)進(jìn)行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.【點(diǎn)睛】此題考查絕對值,難度不大7、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個(gè)扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點(diǎn):圓錐的計(jì)算.8、A【解析】

由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關(guān)鍵是應(yīng)用半圓的弧長=圓錐的底面周長.9、B【解析】

分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點(diǎn)睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.10、D【解析】

根據(jù)k,b的取值范圍確定圖象在坐標(biāo)平面內(nèi)的位置關(guān)系,從而求解.【詳解】∵kb<0,∴k、b異號(hào)。①當(dāng)k>0時(shí),b<0,此時(shí)一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;②當(dāng)k<0時(shí),b>0,此時(shí)一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;綜上所述,當(dāng)kb<0時(shí),一次函數(shù)y=kx+b的圖象一定經(jīng)過第一、四象限。故選:D【點(diǎn)睛】此題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于判斷圖象的位置關(guān)系11、A【解析】

根據(jù)同底數(shù)冪的乘法的性質(zhì),冪的乘方的性質(zhì),積的乘方的性質(zhì),合并同類項(xiàng)的法則,對各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.(a2)3=a2×3=a6,故本選項(xiàng)正確;B.a(chǎn)2+a2=2a2,故本選項(xiàng)錯(cuò)誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項(xiàng)錯(cuò)誤;D.3a﹣a=2a,故本選項(xiàng)錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方,積的乘方和單項(xiàng)式乘法,理清指數(shù)的變化是解題的關(guān)鍵.12、A【解析】

直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點(diǎn),∠B=75°,∴∠AOC=2∠B=150°.故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、七【解析】

根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設(shè)這個(gè)多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點(diǎn)睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關(guān)鍵.14、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點(diǎn)P,設(shè)P點(diǎn)的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點(diǎn),∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.15、18【解析】

三角形的重心是三條中線的交點(diǎn),根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點(diǎn)G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點(diǎn)睛】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強(qiáng),對學(xué)生要求較高.16、10,1,1【解析】

作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質(zhì)得出BC=OC=1;當(dāng)t=3時(shí),N到達(dá)C點(diǎn),M到達(dá)OA的中點(diǎn),OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點(diǎn)C的坐標(biāo)(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當(dāng)t=3時(shí),N到達(dá)C點(diǎn),M到達(dá)OA的中點(diǎn),OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點(diǎn)睛】本題考查了勾股定理、坐標(biāo)與圖形性質(zhì)、線段垂直平分線的性質(zhì)、三角形面積公式等知識(shí);熟練掌握勾股定理是解題的關(guān)鍵.17、1【解析】

根據(jù)相似三角形的對應(yīng)邊的比相等列出比例式,計(jì)算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點(diǎn)睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應(yīng)邊的比相等是解題的關(guān)鍵.18、D【解析】

利用△DAO與△DEA相似,對應(yīng)邊成比例即可求解.【詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)乙種水果的車有2輛、丙種水果的汽車有6輛;(2)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛;(3)見解析.【解析】

(1)根據(jù)“8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售”列出方程組,即可解答;(2)設(shè)裝運(yùn)乙、丙水果的車分別為a輛,b輛,列出方程組即可解答;(3)設(shè)總利潤為w千元,表示出w=10m+1.列出不等式組確定m的取值范圍13≤m≤15.5,結(jié)合一次函數(shù)的性質(zhì),即可解答.【詳解】解:(1)設(shè)裝運(yùn)乙、丙水果的車分別為x輛,y輛,得:解得:答:裝運(yùn)乙種水果的車有2輛、丙種水果的汽車有6輛.(2)設(shè)裝運(yùn)乙、丙水果的車分別為a輛,b輛,得:,解得:答:裝運(yùn)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛.(3)設(shè)總利潤為w千元,w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.∵∴13≤m≤15.5,∵m為正整數(shù),∴m=13,14,15,在w=10m+1中,w隨m的增大而增大,∴當(dāng)m=15時(shí),W最大=366(千元),答:當(dāng)運(yùn)甲水果的車15輛,運(yùn)乙水果的車3輛,運(yùn)丙水果的車2輛,利潤最大,最大利潤為366千元.【點(diǎn)睛】此題主要考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是運(yùn)用函數(shù)性質(zhì)求最值,需確定自變量的取值范圍.20、(1)(2)證明見解析;(3)1.【解析】

(1)由PD切⊙O于點(diǎn)C,AD與過點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;

(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;

(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因?yàn)閠an∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點(diǎn)C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點(diǎn)睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).21、(1);(2)此校車在AB路段超速,理由見解析.【解析】

(1)結(jié)合三角函數(shù)的計(jì)算公式,列出等式,分別計(jì)算AD和BD的長度,計(jì)算結(jié)果,即可.(2)在第一問的基礎(chǔ)上,結(jié)合時(shí)間關(guān)系,計(jì)算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時(shí)1.5秒,所以速度為16÷1.5≈18.1(米/秒),因?yàn)?8.1(米/秒)=65.2千米/時(shí)>45千米/時(shí),所以此校車在AB路段超速.【點(diǎn)睛】考查三角函數(shù)計(jì)算公式,考查速度計(jì)算方法,關(guān)鍵利用正切值計(jì)算方法,計(jì)算結(jié)果,難度中等.22、(1);(2)【解析】【分析】(1)直接運(yùn)用概率的定義求解;(2)根據(jù)題意確定k>0,b>0,再通過列表計(jì)算概率.【詳解】解:(1)因?yàn)?、-1、2三個(gè)數(shù)中由兩個(gè)正數(shù),所以從中任意取一個(gè)球,標(biāo)號(hào)為正數(shù)的概率是.(2)因?yàn)橹本€y=kx+b經(jīng)過一、二、三象限,所以k>0,b>0,又因?yàn)槿∏闆r:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經(jīng)過一、二、三象限的概率是.【點(diǎn)睛】本題考核知識(shí)點(diǎn):求規(guī)概率.解題關(guān)鍵:把所有的情況列出,求出要得到的情況的種數(shù),再用公式求出.23、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點(diǎn)知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)為BC的中點(diǎn),∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵M(jìn)B=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負(fù)值舍去),∴BC=2a=;(3)∵F是AB的中點(diǎn),∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點(diǎn)睛:本題主要考查相似形的綜合問題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).24、(1)見解析;(2)見解析【解析】

(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點(diǎn)∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.25、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點(diǎn)C作C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論