2024屆浙江省富陽二中高一下數(shù)學期末考試模擬試題含解析_第1頁
2024屆浙江省富陽二中高一下數(shù)學期末考試模擬試題含解析_第2頁
2024屆浙江省富陽二中高一下數(shù)學期末考試模擬試題含解析_第3頁
2024屆浙江省富陽二中高一下數(shù)學期末考試模擬試題含解析_第4頁
2024屆浙江省富陽二中高一下數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆浙江省富陽二中高一下數(shù)學期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角A、B、C的對邊分別為a、b、c,若,則角()A. B. C. D.2.若關于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.3.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.4.已知三個內(nèi)角、、的對邊分別是,若,則等于()A. B. C. D.5.若數(shù)列滿足,,則()A. B. C.18 D.206.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織()尺布.A. B. C. D.7.設的內(nèi)角,,的對邊分別為,,.若,,,且,則()A. B. C. D.8.已知等差數(shù)列an的前n項和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.19.已知正數(shù)組成的等比數(shù)列的前8項的積是81,那么的最小值是()A. B. C.8 D.610.()A.0 B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.12.在空間直角坐標系中,點關于原點的對稱點的坐標為______.13.已知函數(shù)在一個周期內(nèi)的圖象如圖所示,則的解析式是______.14.已知數(shù)列是正項數(shù)列,是數(shù)列的前項和,且滿足.若,是數(shù)列的前項和,則_______.15.函數(shù)的遞增區(qū)間是__________.16.平面⊥平面,,,,直線,則直線與的位置關系是___.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(),設函數(shù)在區(qū)間上的最大值為.(1)若,求的值;(2)若對任意的恒成立,試求的最大值.18.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.19.已知函數(shù)為奇函數(shù),且.(1)求實數(shù)a與b的值;(2)若函數(shù),數(shù)列為正項數(shù)列,,且當,時,,設(),記數(shù)列和的前項和分別為,且對有恒成立,求實數(shù)的取值范圍.20.已知函數(shù)f(x)=sin22x-π4(1)求當t=1時,求fπ(2)求gt(3)當-12≤t≤1時,要使關于t的方程g(t)=21.已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,記數(shù)列的前項和為,數(shù)列的前項和為.(1)若,求序數(shù)的值;(2)若數(shù)列的公差,求數(shù)列的公比及.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用余弦定理求三角形的一個內(nèi)角的余弦值,可得的值,得到答案.【詳解】在中,因為,即,利用余弦定理可得,又由,所以,故選C.【點睛】本題主要考查了余弦定理的應用,其中解答中根據(jù)題設條件,合理利用余弦定理求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、A【解析】

利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【詳解】關于的不等式在區(qū)間上有解在上有解即在上成立,設函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【點睛】本題是一道關于一元二次不等式的題目,解題的關鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎題.3、C【解析】

方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【點睛】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎題.4、D【解析】

根據(jù)正弦定理把邊化為對角的正弦求解.【詳解】【點睛】本題考查正弦定理,邊角互換是正弦定理的重要應用,注意增根的排除.5、A【解析】

首先根據(jù)題意得到:是以首項為,公差為的等差數(shù)列.再計算即可.【詳解】因為,所以是以首項為,公差為的等差數(shù)列.,.故選:A【點睛】本題主要考查等差數(shù)列的定義,熟練掌握等差數(shù)列的表達式是解題的關鍵,屬于簡單題.6、B【解析】由題可知每天織的布的多少構(gòu)成等差數(shù)列,其中第一天為首項,一月按30天計可得,從第2天起每天比前一天多織的即為公差.又,解得.故本題選B.7、B【解析】由余弦定理得:,所以,即,解得:或,因為,所以,故選B.考點:余弦定理.8、B【解析】

直角利用待定系數(shù)法可得答案.【詳解】因為S8=8a1+a82【點睛】本題主要考查等差數(shù)列的基本量的相關計算,難度不大.9、A【解析】

利用等比數(shù)列的通項公式和均值不等式可得結(jié)果.【詳解】由由為正項數(shù)列,可知再由均值不等式可知所以(當且僅當時取等號)故選:A【點睛】本題主要考查等比數(shù)列的通項公式及均值不等式,屬基礎題.10、C【解析】試題分析:考點:兩角和正弦公式二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.12、【解析】

利用空間直角坐標系中,關于原點對稱的點的坐標特征解答即可.【詳解】在空間直角坐標系中,關于原點對稱的點的坐標對應互為相反數(shù),所以點關于原點的對稱點的坐標為.故答案為:【點睛】本題主要考查空間直角坐標系中對稱點的特點,意在考查學生對該知識的理解掌握水平,屬于基礎題.13、【解析】

由圖象得出,得出該函數(shù)圖象的最小正周期,可得出,再將點的坐標代入函數(shù)的解析式,結(jié)合該函數(shù)在附近的單調(diào)性求得的表達式,即可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,,則,由于函數(shù)的圖象過點,且在附近單調(diào)遞增,所以,,,因此,.故答案為:.【點睛】本題考查利用三角函數(shù)的圖象求解析式,一般要結(jié)合圖象依次求出、、的值,在利用對稱中心求時,要結(jié)合函數(shù)在對稱中心附近的單調(diào)性來求解,考查計算能力,屬于中等題.14、【解析】

利用將變?yōu)?,整理發(fā)現(xiàn)數(shù)列{}為等差數(shù)列,求出,進一步可以求出,再將,代入,發(fā)現(xiàn)可以裂項求的前99項和?!驹斀狻慨敃r,符合,當時,符合,【點睛】一般公式的使用是將變?yōu)椋绢}是將變?yōu)?,給后面的整理帶來方便。先求,再求,再求,一切都順其自然。15、;【解析】

先利用輔助角公式對函數(shù)化簡,由可求解.【詳解】函數(shù),由,可得,所以函數(shù)的單調(diào)增區(qū)間為.故答案為:【點睛】本題考查了輔助角公式、正弦函數(shù)的圖像與性質(zhì),需熟記公式與性質(zhì),屬于基礎題.16、【解析】

利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長方體中,設平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因為,由線面垂直的性質(zhì)定理,可得.【點睛】空間中點、線、面的位置關系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進行求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)二次函數(shù)的單調(diào)性得在區(qū)間,單調(diào)遞減,在區(qū)間單調(diào)遞增,從得而得;(2)①當時,在區(qū)間上是單調(diào)函數(shù),則,利用不等式的放縮法求得;②當時,對進行分類討論,求得;從而求得k的最大值為.【詳解】(1)當時,,結(jié)合圖像可知,在區(qū)間,單調(diào)遞減,在區(qū)間單調(diào)遞增..(2)①當時,在區(qū)間上是單調(diào)函數(shù),則,而,,,∴.②當時,的對稱軸在區(qū)間內(nèi),則,又,(?。┊敃r,有,,則,(ⅱ)當時,有,則,所以,對任意的都有,綜上所述,時在區(qū)間的最大值為,所以k的最大值為.【點睛】本題考查一元二次函數(shù)的圖象與性質(zhì)、含參問題中的恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意討論的完整性.18、(1)84;(2);(3)【解析】

(1)每個小矩形的面積乘以該組中間值,所得數(shù)據(jù)求和就是平均數(shù);(2)根據(jù)需求量分段表示函數(shù)關系;(3)根據(jù)(1)利潤T不少于100元時,即,即,求出其頻率,即可估計概率.【詳解】(1)估計食堂面包需求量的平均數(shù)為:(2)解:由題意,當時,利潤,當時,利潤,即T關于x的函數(shù)解析式(3)解:由題意,設利潤T不少于100元為事件A,由(1)知,利潤T不少于100元時,即,即,由直方圖可知,當時,所求概率為【點睛】此題考查頻率分布直方圖,根據(jù)頻率分布直方圖求平均數(shù),計算頻率,以及建立函數(shù)模型解決實際問題,綜合性比較強.19、(1);(2)【解析】

(1)根據(jù)函數(shù)奇偶性得到,再由,得;(2),將原式化簡得到,進而得到,數(shù)列的前項和,,原恒成立問題轉(zhuǎn)化為對恒成立,對n分奇偶得到最值即可.【詳解】(1)因為為奇函數(shù),,得,又,得.(2)由(1)知,得,又,化簡得到:,又,所以,又,故,則數(shù)列的前項和;又,則數(shù)列的前項和為,對恒成立對恒成立對恒成立,令,則當為奇數(shù)時,原不等式對恒成立對恒成立,又函數(shù)在上單增,故有;當為偶數(shù)時,原不等式對恒成立對恒成立,又函數(shù)在上單增,故有.綜上得.【點睛】這個題目考查了函數(shù)的奇偶性的應用以及數(shù)列通項公式的求法,數(shù)列前n項和的求法,還涉及不等式恒成立的問題,屬于綜合性較強的題目,數(shù)列中最值的求解方法如下:1.鄰項比較法,求數(shù)列的最大值,可通過解不等式組求得的取值范圍;求數(shù)列的最小值,可通過解不等式組求得的取值范圍;2.數(shù)形結(jié)合,數(shù)列是一特殊的函數(shù),分析通項公式對應函數(shù)的特點,借助函數(shù)的圖像即可求解;3.單調(diào)性法,數(shù)列作為特殊的函數(shù),可通過函數(shù)的單調(diào)性研究數(shù)列的單調(diào)性,必須注意的是數(shù)列對應的是孤立的點,這與連續(xù)函數(shù)的單調(diào)性有所不同;也可以通過差值的正負確定數(shù)列的單調(diào)性.20、(1)-4(2)g(t)=t2【解析】

(1)直接代入計算得解;(2)先求出sin(2x-π4)∈[-12,1]【詳解】(1)當t=1時,f(x)=sin22x-(2)因為x∈[π24,πf(x)=[sin(2x-當t<-12時,則當sin當-12≤t≤1時,則當當t>1時,則當sin(2x-π故g(t)=(3)當-12≤t≤1時,g(t)=-6t+1,令欲使g(t)=kt2-9有一個實根,則只需h(-解得k≤-2或所以k的范圍:(-【點睛】本題主要考查三角函數(shù)的范圍的計算,考查二次函數(shù)的最值的求法和方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論