重慶市涪陵區(qū)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第1頁
重慶市涪陵區(qū)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第2頁
重慶市涪陵區(qū)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第3頁
重慶市涪陵區(qū)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第4頁
重慶市涪陵區(qū)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重慶市涪陵區(qū)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,是的直徑,弦,垂足為點(diǎn),點(diǎn)是上的任意一點(diǎn),延長交的延長線于點(diǎn),連接.若,則等于()A. B. C. D.2.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個3.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為A.6 B.8 C.10 D.124.在平面直角坐標(biāo)系中,點(diǎn)P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限5.在,0,-1,這四個數(shù)中,最小的數(shù)是()A. B.0 C. D.-16.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點(diǎn)的兩個角是對頂角 D.等腰三角形兩底角相等7.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.128.如圖,PA、PB切⊙O于A、B兩點(diǎn),AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°9.計(jì)算4+(﹣2)2×5=()A.﹣16B.16C.20D.2410.如圖,在平面直角坐標(biāo)系xOy中,△由△繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)11.有理數(shù)a,b在數(shù)軸上的對應(yīng)點(diǎn)如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④12.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動,點(diǎn)E與點(diǎn)D關(guān)于AC對稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時(shí),EF與半圓相切;④若點(diǎn)F恰好落在BC上,則AD=;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時(shí),線段EF掃過的面積是.其中正確結(jié)論的序號是.14.某種藥品原來售價(jià)100元,連續(xù)兩次降價(jià)后售價(jià)為81元,若每次下降的百分率相同,則這個百分率是.15.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.16.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結(jié)果保留根號)17.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)△DCM為直角三角形時(shí),折痕MN的長為__.18.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學(xué)生約有多少人?20.(6分)(1)計(jì)算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.21.(6分)閱讀與應(yīng)用:閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?,所以,從而(?dāng)a=b時(shí)取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時(shí),函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時(shí),周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時(shí),的最小值為__________.問題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))22.(8分)武漢市某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為“垃圾分類知多少”的專題調(diào)查活動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷詞查的結(jié)果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:等級非常了解比較了解只聽說過不了解頻數(shù)40120364頻率0.2m0.180.02(1)本次問卷調(diào)查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數(shù)據(jù),寫出等級及其百分比;根據(jù)表中的數(shù)據(jù)計(jì)算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計(jì)圖所對應(yīng)的扇形的圓心角的度數(shù);(3)若該校有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計(jì)這些學(xué)生中“比較了解”垃圾分類知識的人數(shù)約為多少?23.(8分)已知拋物線y=x2﹣(2m+1)x+m2+m,其中m是常數(shù).(1)求證:不論m為何值,該拋物線與z軸一定有兩個公共點(diǎn);(2)若該拋物線的對稱軸為直線x=,請求出該拋物線的頂點(diǎn)坐標(biāo).24.(10分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為P(2,9),與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C(0,5).(Ⅰ)求二次函數(shù)的解析式及點(diǎn)A,B的坐標(biāo);(Ⅱ)設(shè)點(diǎn)Q在第一象限的拋物線上,若其關(guān)于原點(diǎn)的對稱點(diǎn)Q′也在拋物線上,求點(diǎn)Q的坐標(biāo);(Ⅲ)若點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,使得以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,且AC為其一邊,求點(diǎn)M,N的坐標(biāo).25.(10分)先化簡,再求值:(1+)÷,其中x=+1.26.(12分)在中,,是的角平分線,交于點(diǎn).(1)求的長;(2)求的長.27.(12分)在某市組織的大型商業(yè)演出活動中,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.求每張門票原定的票價(jià);根據(jù)實(shí)際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

連接BD,利用直徑得出∠ABD=65°,進(jìn)而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點(diǎn)睛】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.2、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結(jié)論正確的是①②③④共4個.故選C.【點(diǎn)睛】考點(diǎn):1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)3、C【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點(diǎn)睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.4、A【解析】

分點(diǎn)P的橫坐標(biāo)是正數(shù)和負(fù)數(shù)兩種情況討論求解.【詳解】①m-3>0,即m>3時(shí),2-m<0,所以,點(diǎn)P(m-3,2-m)在第四象限;②m-3<0,即m<3時(shí),2-m有可能大于0,也有可能小于0,點(diǎn)P(m-3,2-m)可以在第二或三象限,綜上所述,點(diǎn)P不可能在第一象限.故選A.【點(diǎn)睛】本題考查了各象限內(nèi)點(diǎn)的坐標(biāo)的符號特征,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【解析】試題分析:因?yàn)樨?fù)數(shù)小于0,正數(shù)大于0,正數(shù)大于負(fù)數(shù),所以在,0,-1,這四個數(shù)中,最小的數(shù)是-1,故選D.考點(diǎn):正負(fù)數(shù)的大小比較.6、D【解析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯誤,為假命題;B、=4的平方根是±2,錯誤,為假命題;C、有公共頂點(diǎn)且相等的兩個角是對頂角,錯誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.7、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進(jìn)而得出AE=2AO=1.故選B.考點(diǎn):1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)8、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因?yàn)槭菆A的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點(diǎn)睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。9、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點(diǎn)睛:本題考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計(jì)算方法.10、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對應(yīng)點(diǎn)的連線CC′、AA′的垂直平分線過點(diǎn)(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(diǎn)(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標(biāo)是P(1,-1)故選B.考點(diǎn):坐標(biāo)與圖形變化—旋轉(zhuǎn).11、B【解析】分析:本題是考察數(shù)軸上的點(diǎn)的大小的關(guān)系.解析:由圖知,b<0<a,故①正確,因?yàn)閎點(diǎn)到原點(diǎn)的距離遠(yuǎn),所以|b|>|a|,故②錯誤,因?yàn)閎<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.12、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點(diǎn):多邊形的內(nèi)角和定理以及多邊形的外角和定理二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當(dāng)CD⊥AB時(shí),如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:點(diǎn)D在線段AB上運(yùn)動時(shí),CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯誤;③當(dāng)AD=2時(shí),連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當(dāng)點(diǎn)F恰好落在上時(shí),連接FB、AF,如圖4所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯誤;⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對稱,點(diǎn)D與點(diǎn)F關(guān)于BC對稱,∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時(shí),點(diǎn)E的運(yùn)動路徑AM與AB關(guān)于AC對稱,點(diǎn)F的運(yùn)動路徑NB與AB關(guān)于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.故答案為①③⑤.考點(diǎn):1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).14、10%.【解析】

設(shè)平均每次降價(jià)的百分率為,那么第一次降價(jià)后的售價(jià)是原來的,那么第二次降價(jià)后的售價(jià)是原來的,根據(jù)題意列方程解答即可.【詳解】設(shè)平均每次降價(jià)的百分率為,根據(jù)題意列方程得,,解得,(不符合題意,舍去),答:這個百分率是.故答案為.【點(diǎn)睛】本題考查一元二次方程的應(yīng)用,要掌握求平均變化率的方法.若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為.15、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).16、40【解析】

利用等腰直角三角形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,正確得出tan∠CDA=tan30°=是解題關(guān)鍵.17、或【解析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進(jìn)行討論:當(dāng)∠CDM=90°時(shí),△CDM是直角三角形;當(dāng)∠CMD=90°時(shí),△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當(dāng)∠CDM=90°時(shí),△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當(dāng)∠CMD=90°時(shí),△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點(diǎn)睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.18、【解析】

利用P(A)=,進(jìn)行計(jì)算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點(diǎn)睛】本題考查了概率的簡單計(jì)算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)B,C;(2)2;(3)該校身高在165≤x<175之間的學(xué)生約有462人.【解析】

根據(jù)直方圖即可求得男生的眾數(shù)和中位數(shù),求得男生的總?cè)藬?shù),就是女生的總?cè)藬?shù),然后乘以對應(yīng)的百分比即可求解.【詳解】解:(1)∵直方圖中,B組的人數(shù)為12,最多,∴男生的身高的眾數(shù)在B組,男生總?cè)藬?shù)為:4+12+10+8+6=40,按照從低到高的順序,第20、21兩人都在C組,∴男生的身高的中位數(shù)在C組,故答案為B,C;(2)女生身高在E組的百分比為:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的樣本中,男生、女生的人數(shù)相同,∴樣本中,女生身高在E組的人數(shù)有:40×5%=2(人),故答案為2;(3)600×+480×(25%+15%)=270+192=462(人).答:該校身高在165≤x<175之間的學(xué)生約有462人.【點(diǎn)睛】考查頻數(shù)(率)分布直方圖,頻數(shù)(率)分布表,扇形統(tǒng)計(jì)圖,中位數(shù),眾數(shù),比較基礎(chǔ),掌握計(jì)算方法是解題的關(guān)鍵.20、(1);(2);【解析】

(1)根據(jù)負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式【點(diǎn)睛】本題考查分式的混合運(yùn)算、實(shí)數(shù)的運(yùn)算、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.21、問題1:28問題2:38問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得:,因?yàn)閤>0,所以,當(dāng)即x=800時(shí),y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時(shí),該校每天生均投入最低,最低費(fèi)用是2元.【解析】試題分析:問題1:當(dāng)時(shí),周長有最小值,求x的值和周長最小值;問題2:變形,由當(dāng)x+1=時(shí),的最小值,求出x值和的最小值;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費(fèi)用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.試題解析:問題1:∵當(dāng)(x>0)時(shí),周長有最小值,∴x=2,∴當(dāng)x=2時(shí),有最小值為=3.即當(dāng)x=2時(shí),周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當(dāng)x+1=(x>-1)時(shí),的最小值,∴x=3,∴x=3時(shí),有最小值為3+3=8,即當(dāng)x=3時(shí),的最小值為8;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得,因?yàn)閤>0,所以,當(dāng)即x=800時(shí),y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800時(shí),該校每天生均投入最低,最低費(fèi)用是2元.22、(1)200;0.6(2)非常了解20%,比較了解60%;72°;(3)900人【解析】

(1)根據(jù)非常了解的頻數(shù)與頻率即可求出本次問卷調(diào)查取樣的樣本容量,用1減去各等級的頻率即可得到m值;(2)根據(jù)非常了解的頻率、比較了解的頻率即可求出其百分比,與非常了解的圓心角度數(shù);(3)用全校人數(shù)乘以非常了解的頻率即可.【詳解】解:(1)本次問卷調(diào)查取樣的樣本容量為40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比較了解60%;非常了解的圓心角度數(shù):360°×20%=72°(3)1500×60%=900(人)答:“比較了解”垃圾分類知識的人數(shù)約為900人.【點(diǎn)睛】此題主要考查扇形統(tǒng)計(jì)圖的應(yīng)用,解題的關(guān)鍵是根據(jù)頻數(shù)與頻率求出調(diào)查樣本的容量.23、(1)見解析;(2)頂點(diǎn)為(,﹣)【解析】

(1)根據(jù)題意,由根的判別式△=b2﹣4ac>0得到答案;(2)結(jié)合題意,根據(jù)對稱軸x=﹣得到m=2,即可得到拋物線解析式為y=x2﹣5x+6,再將拋物線解析式為y=x2﹣5x+6變形為y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.【詳解】(1)證明:a=1,b=﹣(2m+1),c=m2+m,∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,∴拋物線與x軸有兩個不相同的交點(diǎn).(2)解:∵y=x2﹣(2m+1)x+m2+m,∴對稱軸x=﹣==,∵對稱軸為直線x=,∴=,解得m=2,∴拋物線解析式為y=x2﹣5x+6,∵y=x2﹣5x+6=(x﹣)2﹣,∴頂點(diǎn)為(,﹣).【點(diǎn)睛】本題考查根的判別式、對稱軸和頂點(diǎn),解題的關(guān)鍵是掌握根的判別式、對稱軸和頂點(diǎn)的計(jì)算和使用.24、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】

(1)設(shè)頂點(diǎn)式,再代入C點(diǎn)坐標(biāo)即可求解解析式,再令y=0可求解A和B點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)Q(m,﹣m2+4m+5),則其關(guān)于原點(diǎn)的對稱點(diǎn)Q′(﹣m,m2﹣4m﹣5),再將Q′坐標(biāo)代入拋物線解析式即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論