云南紅河州一中2023-2024學(xué)年高一下數(shù)學(xué)期末預(yù)測試題含解析_第1頁
云南紅河州一中2023-2024學(xué)年高一下數(shù)學(xué)期末預(yù)測試題含解析_第2頁
云南紅河州一中2023-2024學(xué)年高一下數(shù)學(xué)期末預(yù)測試題含解析_第3頁
云南紅河州一中2023-2024學(xué)年高一下數(shù)學(xué)期末預(yù)測試題含解析_第4頁
云南紅河州一中2023-2024學(xué)年高一下數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南紅河州一中2023-2024學(xué)年高一下數(shù)學(xué)期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對稱;③在區(qū)間上單調(diào)遞增;④若實數(shù)m使得方程在上恰好有三個實數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④2.袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“?!薄ⅰ皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“?!?、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.3.若為圓的弦的中點,則直線的方程是()A. B.C. D.4.若,則下列不等式成立的是A. B. C. D.5.已知圓(為圓心,且在第一象限)經(jīng)過,,且為直角三角形,則圓的方程為()A. B.C. D.6.已知直線是函數(shù)的一條對稱軸,則的一個單調(diào)遞減區(qū)間是()A. B. C. D.7.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a8.在中,已知,.若最長邊為,則最短邊長為()A. B. C. D.9.某數(shù)學(xué)競賽小組有3名男同學(xué)和2名女同學(xué),現(xiàn)從這5名同學(xué)中隨機選出2人參加數(shù)學(xué)競賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學(xué)和1名女同學(xué)的概率為()A. B. C. D.10.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對的邊分別為,,則____12.設(shè)為數(shù)列的前項和,則__13.在中,內(nèi)角,,所對的邊分別為,,,,且,則面積的最大值為______.14.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.15.若,則實數(shù)的值為_______.16.直線的傾斜角的大小是_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè);(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè);試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?18.在上海自貿(mào)區(qū)的利好刺激下,公司開拓國際市場,基本形成了市場規(guī)模;自2014年1月以來的第個月(2014年1月為第一個月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、和(單位:萬件),依據(jù)銷售統(tǒng)計數(shù)據(jù)發(fā)現(xiàn)形成如下營銷趨勢:,(其中,為常數(shù),),已知萬件,萬件,萬件.(1)求,的值,并寫出與滿足的關(guān)系式;(2)證明:逐月遞增且控制在2萬件內(nèi);19.(1)若對任意的,總有成立,求常數(shù)的值;(2)在數(shù)列中,,求通項;(3)在(2)的條件下,設(shè),從數(shù)列中依次取出第項,第項,第項,按原來的順序組成新數(shù)列,其中試問是否存在正整數(shù),使得且成立?若存在,求出的值;若不存在,說明理由.20.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):x24568y3040605070(1)若廣告費與銷售額具有相關(guān)關(guān)系,求回歸直線方程;(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求兩組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值都不超過5的概率.21.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2(Ⅰ)求A的大?。唬á颍┤绻鹀osB=63

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【詳解】因為,故①正確因為,故②不正確由得所以在區(qū)間上單調(diào)遞增,故③正確若實數(shù)m使得方程在上恰好有三個實數(shù)解,結(jié)合的圖象知,必有此時,另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【點睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時首先應(yīng)把函數(shù)化成三角函數(shù)基本型.2、B【解析】

隨機模擬產(chǎn)生了18組隨機數(shù),其中第三次就停止摸球的隨機數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.【詳解】隨機模擬產(chǎn)生了以下18組隨機數(shù):343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的隨機數(shù)有:142,112,241,142,共4個,由此可以估計,恰好第三次就停止摸球的概率為p.故選:B.【點睛】本題考查概率的求法,考查列舉法等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.3、D【解析】

圓的圓心為O,求出圓心坐標(biāo),利用垂徑定理,可以得到,求出直線的斜率,利用兩直線垂直斜率關(guān)系可以求出直線的斜率,利用點斜式寫出直線方程,最后化為一般式方程.【詳解】設(shè)圓的圓心為O,坐標(biāo)為(1,0),根據(jù)圓的垂徑定理可知:,因為,所以,因此直線的方程為,故本題選D.【點睛】本題考查了圓的垂徑定理、兩直線垂直斜率的關(guān)系,考查了斜率公式.4、C【解析】

利用的單調(diào)性直接判斷即可?!驹斀狻恳驗樵谏线f增,又,所以成立。故選:C【點睛】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題。5、D【解析】

設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【詳解】依題意,圓經(jīng)過點,可設(shè)且,半徑為,則,解得,所以圓的方程為.【點睛】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.6、B【解析】

利用周期公式計算出周期,根據(jù)對稱軸對應(yīng)的是最值,然后分析單調(diào)減區(qū)間.【詳解】因為,若取到最大值,則,即,此時處最接近的單調(diào)減區(qū)間是:即,故B符合;若取到最小值,則,即,此時處最接近的單調(diào)減區(qū)間是:即,此時無符合答案;故選:B.【點睛】對于正弦型函數(shù),對稱軸對應(yīng)的是函數(shù)的最值,這一點值得注意.7、D【解析】

由函數(shù)的單調(diào)性可得:當(dāng)x0<c時,函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當(dāng)x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【點睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.8、A【解析】試題分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,為最長邊,為最短邊,由正弦定理:,解得.考點:正弦定理.9、A【解析】

把5名學(xué)生編號,然后寫出任取2人的所有可能,按要求計數(shù)后可得概率.【詳解】3名男生編號為,兩名女生編號為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點睛】本題考查古典概型,方法是列舉法.10、D【解析】

利用古典概型的概率公式可計算出所求事件的概率.【詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【點睛】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用正弦定理將邊角關(guān)系式中的邊都化成角,再結(jié)合兩角和差公式進行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結(jié)果:【點睛】本題考查李用正弦定理進行邊角關(guān)系式的化簡問題,屬于常規(guī)題.12、【解析】

當(dāng)時,;當(dāng)時,,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因為,,所以,同理可得,,,所以,應(yīng)選答案.點睛:本題運用演繹推理的思維方法,分別探求出數(shù)列各項的規(guī)律(成等比數(shù)列),再運用等比數(shù)列的求和公式,使得問題簡捷、巧妙獲解.13、【解析】

根據(jù)正弦定理將轉(zhuǎn)化為,即,由余弦定理得,再用基本不等式法求得,根據(jù)面積公式求解.【詳解】根據(jù)正弦定理可轉(zhuǎn)化為,化簡得由余弦定理得因為所以,當(dāng)且僅當(dāng)時取所以則面積的最大值為.故答案為:【點睛】本題主要考查正弦定理,余弦定理,基本不等式的綜合應(yīng)用,還考查了運算求解的能力,屬于中檔題.14、5【解析】

根據(jù)平均數(shù)的定義計算.【詳解】由題意,故答案為:5.【點睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關(guān)鍵.實際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.15、【解析】

由得,代入方程即可求解.【詳解】,.,,,即,故填.【點睛】本題主要考查了反三角函數(shù)的定義及運算性質(zhì),屬于中檔題.16、【解析】試題分析:由題意,即,∴.考點:直線的傾斜角.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、方式一最大值【解析】

試題分析:(1)運用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當(dāng)選擇公式進行變形;(3)把形如化為,可進一步研究函數(shù)的周期、單調(diào)性、最值和對稱性.試題解析:解(1)在中,設(shè),則又當(dāng)即時,(Ⅱ)令與的交點為,的交點為,則,于是,又當(dāng)即時,取得最大值.,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:考點:把實際問題轉(zhuǎn)化為三角函數(shù)求最值問題.18、(1),(2)詳見解析【解析】試題分析:(1)依題意:,將n取1,2,構(gòu)建方程組,即可求得a,b的值,從而可得與滿足的關(guān)系式;(2)先證明,于是,再用作差法證明,從而可得結(jié)論;試題解析:(1)依題意:,∴,∴……………①又,∴……………②解①②得從而(2)由于.但,否則可推得矛盾.故,于是.又,所以從而.考點:1.?dāng)?shù)列的應(yīng)用;2.?dāng)?shù)列與不等式的綜合19、(1)(2)(3)存在,,或【解析】

由題設(shè)得恒成立,所以,由和知,,且,由此能推導(dǎo)出假設(shè)存在正整數(shù)m,r滿足題設(shè),由,,又得,于是,由此能推導(dǎo)出存在正整數(shù)m,r滿足題設(shè),,或,.【詳解】由題設(shè)得,即恒成立,所以,由題設(shè)又由得,,且,即是首項為1,公比為2的等比數(shù)列,所以即為所求.假設(shè)存在正整數(shù)m,r滿足題設(shè),由知,顯然,又得,,即是以為首項,為公比的等比數(shù)列.于是,由得,m,,所以或15,當(dāng)時,,;當(dāng)時,,;綜上,存在正整數(shù)m,r滿足題設(shè),,或,【點睛】本題主要考查了數(shù)列中參數(shù)的求法、等差數(shù)列的通項公式和以極限為載體考查數(shù)列性質(zhì)的綜合運用,屬于難題.20、(1);(2).【解析】

(1)首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.(2)由古典概型列舉基本事件求解即可【詳解】(1),因此,所求回歸直線方程為:.(2)x24568y304060507030.54

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論