2024屆江西省臨川區(qū)第一中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
2024屆江西省臨川區(qū)第一中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
2024屆江西省臨川區(qū)第一中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
2024屆江西省臨川區(qū)第一中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
2024屆江西省臨川區(qū)第一中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江西省臨川區(qū)第一中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若一個(gè)數(shù)列的前三項(xiàng)依次為6,18,54,則此數(shù)列的一個(gè)通項(xiàng)公式為()A. B. C. D.2.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.3.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.4.過點(diǎn)且垂直于直線的直線方程為()A. B.C. D.5.已知圓,直線.設(shè)圓O上到直線l的距離等于2的點(diǎn)的個(gè)數(shù)為k,則()A.1 B.2 C.3 D.46.在等差數(shù)列中,若,則()A.10 B.15 C.20 D.257.已知,,則點(diǎn)在直線上的概率為()A. B. C. D.8.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.9.設(shè)等比數(shù)列的前項(xiàng)和為,若,公比,則的值為()A.15 B.16 C.30 D.3110.若正實(shí)數(shù)滿足,且恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若圓:與圓:相交于,兩點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,則公共弦的長度是______.12.若直線平分圓,則的值為________.13.下列關(guān)于函數(shù)與的命題中正確的結(jié)論是______.①它們互為反函數(shù);②都是增函數(shù);③都是周期函數(shù);④都是奇函數(shù).14.設(shè)在的內(nèi)部,且,的面積與的面積之比為______.15.___________.16.如圖,在正方體中,點(diǎn)是棱上的一個(gè)動點(diǎn),平面交棱于點(diǎn).下列命題正確的為_______________.①存在點(diǎn),使得//平面;②對于任意的點(diǎn),平面平面;③存在點(diǎn),使得平面;④對于任意的點(diǎn),四棱錐的體積均不變.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),它的部分圖象如圖所示.(1)求函數(shù)的解析式;(2)當(dāng)時(shí),求函數(shù)的值域.18.某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷售,得到如下數(shù)據(jù):單價(jià)(元)88.28.48.68.89銷量(件)908483807568(1)求銷量(件)關(guān)于單價(jià)(元)的線性回歸方程;(2)若單價(jià)定為10元,估計(jì)銷量為多少件;(3)根據(jù)銷量關(guān)于單價(jià)的線性回歸方程,要使利潤最大,應(yīng)將價(jià)格定為多少?參考公式:,.參考數(shù)據(jù):,19.請解決下列問題:(1)已知,求的值;(2)計(jì)算.20.在平面直角坐標(biāo)系中,已知向量,.(1)求證:且;(2)設(shè)向量,,且,求實(shí)數(shù)的值.21.?dāng)?shù)列的前項(xiàng)和.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和,并求使成立的實(shí)數(shù)最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

,,,可以歸納出數(shù)列的通項(xiàng)公式.【詳解】依題意,,,,所以此數(shù)列的一個(gè)通項(xiàng)公式為,故選:C.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)公式,主要考查歸納法得到數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.2、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.3、D【解析】

過的中心M作直線,則上任意點(diǎn)到的距離相等,過線段中點(diǎn)作平面,則面上的點(diǎn)到的距離相等,平面與的交點(diǎn)即為球心O,半徑,故選D.考點(diǎn):求解三棱錐外接球問題.點(diǎn)評:此題的關(guān)鍵是找到球心的位置(球心到4個(gè)頂點(diǎn)距離相等).4、C【解析】

先求出直線的斜率,再求出所求直線的斜率,再利用直線的點(diǎn)斜式方程求解.【詳解】由題得直線的斜率為,所以所求的直線的斜率為,所以所求的直線方程為即.故選:C【點(diǎn)睛】本題主要考查互相垂直直線的性質(zhì),考查直線方程的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】

找出圓O的圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關(guān)系及r-d的值,即可作出判斷.【詳解】由圓的方程得到圓心O(0,0),半徑,∵圓心O到直線l的距離,且r?d=?1<2,∴圓O上到直線l的距離等于2的點(diǎn)的個(gè)數(shù)為2,即k=2.故選:B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,利用圓心到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關(guān)系可判斷直線與圓的位置,考查計(jì)算和幾何應(yīng)用能力,屬于基礎(chǔ)題.6、C【解析】

設(shè)等差數(shù)列的公差為,得到,又由,代入即可求解,得到答案.【詳解】由題意,設(shè)等差數(shù)列的公差為,則,又由,故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等差數(shù)列的通項(xiàng)公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了計(jì)算與求解能力,屬于基礎(chǔ)題,.7、B【解析】

先求出點(diǎn))的個(gè)數(shù),然后求出點(diǎn)在直線上的個(gè)數(shù),最后根據(jù)古典概型求出概率.【詳解】點(diǎn)的個(gè)數(shù)為,其中點(diǎn)三點(diǎn)在直線上,所以點(diǎn)在直線上的概率為,故本題選B.【點(diǎn)睛】本題考查了古典概型概率的計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力.8、D【解析】

根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點(diǎn)的坐標(biāo)求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點(diǎn)的坐標(biāo)代入函數(shù),得,即,因?yàn)?,所以,所以函?shù)的表達(dá)式為.故選D.【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.9、A【解析】

直接利用等比數(shù)列前n項(xiàng)和公式求.【詳解】由題得.故選A【點(diǎn)睛】本題主要考查等比數(shù)列求和,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10、A【解析】

先利用基本不等求出的最小值,然后根據(jù)恒成立,可得,再求出a的范圍.【詳解】因?yàn)檎龑?shí)數(shù)x,y滿足,,當(dāng)且僅當(dāng),即時(shí)取等號,恒成立,所以只需,,,的取值范圍為,故選:A.【點(diǎn)睛】本題主要考查不等式恒成立問題以及基本不等式求最值,解題時(shí)注意“一正、二定、三相等”的應(yīng)用,本題屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)兩圓在點(diǎn)處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運(yùn)用點(diǎn)到直線的距離公式求出圓心到公共弦的距離,進(jìn)而求出公共弦長.【詳解】由題意,圓圓心坐標(biāo),半徑,圓圓心坐標(biāo),半徑,因?yàn)閮蓤A相交于點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,所以是直角三角形,,所以,由兩點(diǎn)間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長故答案為:【點(diǎn)睛】本題主要考查兩圓公共弦的方程、圓弦長的求法和點(diǎn)到直線的距離公式,考查學(xué)生的分析能力,屬于基礎(chǔ)題.12、1【解析】

把圓的一般式方程化為標(biāo)準(zhǔn)方程得到圓心,根據(jù)直線過圓心,把圓心的坐標(biāo)代入到直線的方程,得到關(guān)于的方程,解方程即可【詳解】圓的標(biāo)準(zhǔn)方程為,則圓心為直線過圓心解得故答案為【點(diǎn)睛】本題考查的是直線與圓的位置關(guān)系,解題的關(guān)鍵是求出圓心的坐標(biāo),屬于基礎(chǔ)題13、④【解析】

利用反函數(shù),增減性,周期函數(shù),奇偶性判斷即可【詳解】①,當(dāng)時(shí),的反函數(shù)是,故錯誤;②,當(dāng)時(shí),是增函數(shù),故錯誤;③,不是周期函數(shù),故錯誤;④,與都是奇函數(shù),故正確故答案為④【點(diǎn)睛】本題考查正弦函數(shù)及其反函數(shù)的性質(zhì),熟記其基本性質(zhì)是關(guān)鍵,是基礎(chǔ)題14、1:3【解析】

記,,可得:為的重心,利用比例關(guān)系可得:,,,結(jié)合:即可得解.【詳解】記,則則為的重心,如下圖由三角形面積公式可得:,,又為的重心,所以,所以所以【點(diǎn)睛】本題主要考查了三角形重心的向量結(jié)論,還考查了轉(zhuǎn)化能力及三角形面積比例計(jì)算,屬于難題.15、【解析】

先將寫成的形式,再根據(jù)誘導(dǎo)公式進(jìn)行求解.【詳解】由題意得:.故答案為:.【點(diǎn)睛】考查三角函數(shù)的誘導(dǎo)公式.,,,,.16、①②④【解析】

根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進(jìn)行判斷即可.【詳解】①當(dāng)為棱上的一中點(diǎn)時(shí),此時(shí)也為棱上的一個(gè)中點(diǎn),此時(shí)//,滿足//平面,故①正確;②連結(jié),則平面,因?yàn)槠矫?,所以平面平面,故②正確;③平面,不可能存在點(diǎn),使得平面,故③錯誤;④四棱錐的體積等于,設(shè)正方體的棱長為1.∵無論、在何點(diǎn),三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【點(diǎn)睛】本題主要考查空間直線和平面平行或垂直的位置關(guān)系的判斷,解答本題的關(guān)鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強(qiáng),難度較大.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)依題意,則,將點(diǎn)的坐標(biāo)代入函數(shù)的解析式可得,故,函數(shù)解析式為.(2)由題意可得,結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)的值域?yàn)?試題解析:(1)依題意,,故.將點(diǎn)的坐標(biāo)代入函數(shù)的解析式可得,則,,故,故函數(shù)解析式為.(2)當(dāng)時(shí),,則,,所以函數(shù)的值域?yàn)?點(diǎn)睛:求函數(shù)f(x)=Asin(ωx+φ)在區(qū)間[a,b]上值域的一般步驟:第一步:三角函數(shù)式的化簡,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范圍確定ωx+φ的取值范圍,再確定sin(ωx+φ)(或cos(ωx+φ))的取值范圍.第三步:求出所求函數(shù)的值域(或最值).18、(1)(2)當(dāng)銷售單價(jià)定為10元時(shí),銷量為50件(3)要使利潤達(dá)到最大,應(yīng)將價(jià)格定位8.75元.【解析】

(1)由均值公式求得均值,,再根據(jù)給定公式計(jì)算回歸系數(shù),得回歸方程;(2)在(1)的回歸方程中令,求得值即可;(3)由利潤可化為的二次函數(shù),由二次函數(shù)知識可得利潤最大值及此時(shí)的值.【詳解】(1)由題意可得,,則,從而,故所求回歸直線方程為.(2)當(dāng)時(shí),,故當(dāng)銷售單價(jià)定為10元時(shí),銷量為50件.(3)由題意可得,,.故要使利潤達(dá)到最大,應(yīng)將價(jià)格定位8.75元.【點(diǎn)睛】本題考查線性回歸直線方程,解題時(shí)只要根據(jù)已知公式計(jì)算,計(jì)算能力是正確解答本題的基礎(chǔ).19、(1)(2)3【解析】

(1)分子分母同時(shí)除以即可得解;(2)由對數(shù)的運(yùn)算求解即可.【詳解】解:(1)由,分子分母同時(shí)除以可得,原式.(2)原式.【點(diǎn)睛】本題考查了三角求值中的齊次式求值問題,重點(diǎn)考查了對數(shù)的運(yùn)算,屬基礎(chǔ)題.20、(1)證明見解析(2)【解析】

(1)根據(jù)向量的坐標(biāo)求出向量模的方法以及向量的數(shù)量積即可求解.(2)根據(jù)向量垂直,可得數(shù)量積等于,進(jìn)而解方程即可求解.【詳解】(1)證明:,,所以,因?yàn)椋?;?)因?yàn)?,所以,由?)得:所以,解得.【點(diǎn)睛】本題考查了向量坐標(biāo)求向量的模以及向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.21、(1);(2),.【解析】

(1)由已知可先求得首項(xiàng),然后由,得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論