版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省菏澤市23校聯(lián)考2025屆高一數(shù)學第二學期期末質量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.向量,,若,則()A.2 B. C. D.2.平面平面,直線,,那么直線與直線的位置關系一定是()A.平行 B.異面 C.垂直 D.不相交3.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還”.其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為()A.48里 B.24里 C.12里 D.6里5.已知向量=(3,4),=(2,1),則向量與夾角的余弦值為()A. B. C. D.6.已知數(shù)列滿足,,則()A. B. C. D.7.在數(shù)列{an}中,若a1,且對任意的n∈N*有,則數(shù)列{an}前10項的和為()A. B. C. D.8.已知等差數(shù)列中,則()A.10 B.16 C.20 D.249.已知數(shù)列滿足,且是函數(shù)的兩個零點,則等于()A.24 B.32 C.48 D.6410.設是空間四個不同的點,在下列命題中,不正確的是A.若與共面,則與共面B.若與是異面直線,則與是異面直線C.若==,則D.若==,則=二、填空題:本大題共6小題,每小題5分,共30分。11.正項等比數(shù)列中,為數(shù)列的前n項和,,則的取值范圍是____________.12.已知方程的兩根分別為、、且,且__________.13.設數(shù)列是等差數(shù)列,,,則此數(shù)列前20項和等于______.14.設數(shù)列滿足,且,則數(shù)列的前n項和_______________.15.函數(shù)單調遞減區(qū)間是.16.函數(shù)的最小值是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在四棱錐中,底面是平行四邊形,平面,點,分別為,的中點,且,,.(1)證明:平面;(2)求直線與平面所成角的余弦值.18.一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;②通過建立的y關于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):=14.45,=27.31,=0.850,=1.042,=1.1.②參考公式:相關系數(shù):r=.回歸方程=x+中斜率和截距的最小二乘估計公式分別為:=,=-19.如圖,在四棱錐中,,側面底面.(1)求證:平面平面;(2)若,且二面角等于,求直線與平面所成角的正弦值.20.在直三棱柱中,,,,分別是,的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.如圖所示,在平面直角坐標系中,角和的頂點與坐標原點重合,始邊與軸的非負半軸重合,終邊分別與單位圓交于點、兩點,點的縱坐標為.(Ⅰ)求的值;(Ⅱ)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:,,得得,故選C.考點:向量的垂直運算,向量的坐標運算.2、D【解析】
利用空間中線線、線面、面面的位置關系得出直線與直線沒有公共點.【詳解】由題平面平面,直線,則直線與直線的位置關系平行或異面,即兩直線沒有公共點,不相交.故選D.【點睛】本題考查空間中兩條直線的位置關系,屬于簡單題.3、C【解析】
根據(jù),,可判斷所在象限.【詳解】,在三四象限.,在一三象限,故在第三象限答案為C【點睛】本題考查了三角函數(shù)在每個象限的正負,屬于基礎題型.4、C【解析】
根據(jù)等比數(shù)列前項和公式列方程,求得首項的值,進而求得的值.【詳解】設第一天走,公比,所以,解得,所以.故選C.【點睛】本小題主要考查等比數(shù)列前項和的基本量計算,考查等比數(shù)列的通項公式,考查中國古典數(shù)學文化,屬于基礎題.5、A【解析】
由向量的夾角公式計算.【詳解】由已知,,.∴.故選A.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積公式是解題基礎.6、A【解析】
由給出的遞推式變形,構造出新的等比數(shù)列,由等比數(shù)列的通項公式求出的表達式,再利用等比數(shù)列的求和公式求解即可.【詳解】解:解:在數(shù)列中,
由,得,
,
,
則數(shù)列是以2為首項,以2為公比的等比數(shù)列,
.,故選:A.【點睛】本題考查了數(shù)列的遞推式,考查了等比關系的確定以及等比數(shù)列的求和公式,屬中檔題.7、A【解析】
用累乘法可得.利用錯位相減法可得S,即可求解S10=22.【詳解】∵,則.∴,.Sn,.∴,∴S,則S10=22.故選:A.【點評】本題考查了累乘法求通項,考查了錯位相減法求和,意在考查計算能力,屬于中檔題.8、C【解析】
根據(jù)等差數(shù)列性質得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質,是數(shù)列的??碱}型.9、D【解析】試題分析:依題意可知,,,,所以.即,故,,,.,所以,又可知.,故.考點:函數(shù)的零點、數(shù)列的遞推公式10、D【解析】
由空間四點共面的判斷可是A,B正確,;C,D畫出圖形,可以判定AD與BC不一定相等,證明BC與AD一定垂直.【詳解】對于選項A,若與共面,則與共面,正確;對于選項B,若與是異面直線,則四點不共面,則與是異面直線,正確;如圖,空間四邊形ABCD中,AB=AC,DB=DC,則AD與BC不一定相等,∴D錯誤;對于C,當四點共面時顯然成立,當四點不共面時,取BC的中點M,連接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正確;【點睛】本題通過命題真假的判定,考查了空間中的直線共面與異面以及垂直問題,是綜合題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用結合基本不等式求得的取值范圍【詳解】由題意知,,且,所以,當且僅當?shù)忍柍闪?,所?故答案為:【點睛】本題考查等比數(shù)列的前n項和及性質,利用性質結合基本不等式求最值是關鍵12、【解析】
由韋達定理和兩角和的正切公式可得,進一步縮小角的范圍可得,進而可求.【詳解】方程兩根、,,,,又,,,,,,,結合,,故答案為.【點睛】本題考查兩角和與差的正切函數(shù),涉及韋達定理,屬中檔題.13、180【解析】
根據(jù)條件解得公差與首項,再代入等差數(shù)列求和公式得結果【詳解】因為,,所以,【點睛】本題考查等差數(shù)列通項公式以及求和公式,考查基本分析求解能力,屬基礎題14、【解析】令15、【解析】
先求出函數(shù)的定義域,找出內外函數(shù),根據(jù)同增異減即可求出.【詳解】由,解得或,所以函數(shù)的定義域為.令,則函數(shù)在上單調遞減,在上單調遞增,又為增函數(shù),則根據(jù)同增異減得,函數(shù)單調遞減區(qū)間為.【點睛】復合函數(shù)法:復合函數(shù)的單調性規(guī)律是“同則增,異則減”,即與若具有相同的單調性,則為增函數(shù),若具有不同的單調性,則必為減函數(shù).16、3【解析】試題分析:考點:基本不等式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)取中點,連接,,構造平行四邊形,由線線平行得到線面平行;(2)根據(jù)線面角的定義作出線面角,在直角三角形中求出數(shù)值.【詳解】(1)證明:取中點,連接,,∵為中點,∴,且,又為中點,底面為平行四邊形,∴,,∴,,即為平行四邊形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,過作,則平面,連結,則為直線與平面所成的夾角,由,,,得,由,得,在中,,得,在中,,∴,即直線與平面所成角的余弦值為.【點睛】這個題目考查了空間中的直線和平面的位置關系.求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;還可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可.18、(1)見解析;(2)①;②3.385萬元.【解析】
(1)由已知條件利用公式,求得的值,再與比較大小即可得結果;(2)根據(jù)所給的數(shù)據(jù),做出變量的平均數(shù),根據(jù)樣本中心點一定在線性回歸方程上,求出的值,寫出線性回歸方程;將代入所求線性回歸方程求出對應的的值即可.【詳解】(1)由已知條件得:,這說明與正相關,且相關性很強.(2)①由已知求得,所以所求回歸直線方程為.②當時,(萬元),此時產(chǎn)品的總成本為3.385萬元.【點睛】本題主要考查線性回歸方程的求解與應用,屬于中檔題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;回歸直線過樣本點中心是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.19、(1)證明見解析;(2).【解析】
(1)由得,,由側面底面得側面,由面面垂直的判定即可證明;(2)由側面,可得,得是二面角的平面角,,推得為等腰直角三角形,取的中點,連接可得,由平面平面,得平面,證明平面,得點到平面的距離等于點到平面的距離,,再利用求解即可【詳解】(1)證明:由可得,因為側面底面,交線為底面且則側面,平面所以,平面平面;(2)由側面可得,,則是二面角的平面角,由可得,為等腰直角三角形取的中點,連接可得因為平面平面,交線為平面且所以平面,點到平面的距離為.因為平面則平面所以點到平面的距離等于點到平面的距離,.設,則在中,;在中,設直線與平面所成角為即所以,直線與平面所成角的正弦值為.【點睛】本題考查面面垂直的判定,二面角及線面角的求解,考查空間想象能與運算求解能力,關鍵是線面平行的性質得到點D到面的距離,是中檔題20、(1)證明見解析。(2)【解析】
(1)首先根據(jù)已知得到,再根據(jù)線面平行的判定即可得到平面.(2)首先根據(jù)線面垂直的判定證明平面,即可找到為與平面所成角,在計算其正弦值即可.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年風電場35kV輸電線路工程合同3篇
- 2024建筑材料多孔磚買賣協(xié)議版B版
- 2024年運輸合同物流金融產(chǎn)品設計與風險管理3篇
- 中考英語-英語-任務型閱讀理解專題練習(附答案)
- 2025年度土地承包經(jīng)營權終止合同范本3篇
- 2025年度安全生產(chǎn)信息化系統(tǒng)設計與實施協(xié)議2篇
- 2025年度物流保險采購合同執(zhí)行細則3篇
- 湖南工藝美術職業(yè)學院《化妝品化學》2023-2024學年第一學期期末試卷
- 通化師范學院《植物生物技術實驗》2023-2024學年第一學期期末試卷
- 重慶醫(yī)科大學《精細化學品分析檢測技術》2023-2024學年第一學期期末試卷
- 拼圖行業(yè)未來五年前景展望
- 廣西玉林市(2024年-2025年小學六年級語文)統(tǒng)編版質量測試(上學期)試卷及答案
- 醫(yī)院醫(yī)??乒ぷ骺偨Y
- 2024-2025學年譯林版八年級英語上學期重點詞匯短語句子歸納【考點清單】
- 廣東省六校聯(lián)考2024-2025學年高二上學期12月月考英語試題
- 養(yǎng)老護理員技能培訓的標準化實施方案
- 2024年企業(yè)采購部年終總結及今后計劃(3篇)
- 2024中國誠通控股集團限公司總部招聘11人易考易錯模擬試題(共500題)試卷后附參考答案
- 物業(yè)客服個人述職報告范例
- 數(shù)據(jù)崗位招聘筆試題與參考答案2024年
- 2025年山東省高考數(shù)學模擬試卷(附答案解析)
評論
0/150
提交評論