2024屆浙江省教育綠色評價聯(lián)盟高一數(shù)學第二學期期末經(jīng)典試題含解析_第1頁
2024屆浙江省教育綠色評價聯(lián)盟高一數(shù)學第二學期期末經(jīng)典試題含解析_第2頁
2024屆浙江省教育綠色評價聯(lián)盟高一數(shù)學第二學期期末經(jīng)典試題含解析_第3頁
2024屆浙江省教育綠色評價聯(lián)盟高一數(shù)學第二學期期末經(jīng)典試題含解析_第4頁
2024屆浙江省教育綠色評價聯(lián)盟高一數(shù)學第二學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省教育綠色評價聯(lián)盟高一數(shù)學第二學期期末經(jīng)典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,分別是角的對邊,,則角為()A. B. C. D.或2.若,則()A. B. C. D.3.等差數(shù)列的前項和為,若,且,則()A.10 B.7 C.12 D.34.已知數(shù)列的前項和,則的值為()A.-199 B.199 C.-101 D.1015.已知函數(shù),(),若對任意的(),恒有,那么的取值集合是()A. B. C. D.6.已知定義在上的奇函數(shù)滿足,且當時,,則()A.1 B.-1 C.2 D.-27.一個圓錐的表面積為,它的側面展開圖是圓心角為的扇形,該圓錐的母線長為()A. B.4 C. D.8.設為所在平面內(nèi)一點,若,則下列關系中正確的是()A. B.C. D.9.函數(shù)的大致圖象是()A. B.C. D.10.是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.若直線的傾斜角為,則______.12.設向量,,______.13.若數(shù)列是等差數(shù)列,則數(shù)列也為等差數(shù)列,類比上述性質(zhì),相應地,若正項數(shù)列是等比數(shù)列,則數(shù)列_________也是等比數(shù)列.14.函數(shù)()的值域是__________.15.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為______.16.如圖甲是第七屆國際數(shù)學教育大會(簡稱)的會徽圖案,會徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長度構成數(shù)列,則此數(shù)列的通項公式為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知數(shù)列的前項和滿足,求數(shù)列的通項公式;(2)數(shù)列滿足,(),求數(shù)列的通項公式.18.已知.(1)求;(2)求向量與的夾角的余弦值.19.已知等差數(shù)列滿足,前項和.(1)求的通項公式(2)設等比數(shù)列滿足,,求的通項公式及的前項和.20.在中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知.(1)求角B的大?。唬?)設a=2,c=3,求b和的值.21.△ABC的內(nèi)角A,B,C所對邊分別為,已知△ABC面積為.(1)求角C;(2)若D為AB中點,且c=2,求CD的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由正弦定理,可得,即可求解的大小,得到答案.【詳解】在中,因為,由正弦定理,可得,又由,且,所以或,故選D.【點睛】本題主要考查了正弦定理的應用,其中解答中熟練利用正弦定理,求得的值是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、D【解析】

將指數(shù)形式化為對數(shù)形式可得,再利用換底公式即可.【詳解】解:因為,所以,故選:D.【點睛】本題考查了指數(shù)與對數(shù)的互化,重點考查了換底公式,屬基礎題.3、C【解析】

由等差數(shù)列的前項和公式解得,由,得,由此能求出的值?!驹斀狻拷猓翰顢?shù)列的前n項和為,,,解得,解得,故選:C?!军c睛】本題考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.4、D【解析】

由特點可采用并項求和的方式求得.【詳解】本題正確選項:【點睛】本題考查并項求和法求解數(shù)列的前項和,屬于基礎題.5、A【解析】當時,,畫出圖象如下圖所示,由圖可知,時不符合題意,故選.【點睛】本題主要考查含有絕對值的不等式的解法,考查選擇題的解題策略中的特殊值法.主要的需要滿足的是,根據(jù)不等式的解法,大于在中間,小于在兩邊,可化簡為,左右兩邊為二次函數(shù),中間可以由對數(shù)函數(shù)圖象平移得到,由此畫出圖象驗證是否符合題意.6、B【解析】

根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質(zhì)可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.7、B【解析】

設圓錐的底面半徑為,母線長為,利用扇形面積公式和圓錐表面積公式,求出圓錐的底面圓半徑和母線長.【詳解】設圓錐的底面半徑為,母線長為它的側面展開圖是圓心角為的扇形又圓錐的表面積為,解得:母線長為:本題正確選項:【點睛】本題考查了圓錐的結構特征與應用問題,關鍵是能夠熟練應用扇形面積公式和圓錐表面積公式,是基礎題.8、A【解析】

∵∴?=3(?);∴=?.故選A.9、C【解析】

去掉絕對值將函數(shù)化為分段函數(shù)的形式后可得其圖象的大體形狀.【詳解】由題意得,所以其圖象的大體形狀如選項C所示.故選C.【點睛】解答本題的關鍵是去掉函數(shù)中的絕對值,將函數(shù)化為基本函數(shù)后再求解,屬于基礎題.10、A【解析】

將函數(shù)化為的形式后再進行判斷便可得到結論.【詳解】由題意得,∵,且函數(shù)的最小正周期為,∴函數(shù)時最小正周期為的偶函數(shù).故選A.【點睛】判斷函數(shù)最小正周期時,需要把函數(shù)的解析式化為或的形式,然后利用公式求解即可得到周期.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先利用直線方程求出直線斜率,通過斜率求出傾斜角.【詳解】由題知直線方程為,所以直線的斜率,又因為傾斜角,所以傾斜角.故答案為:.【點睛】本題主要考查了直線傾斜角與直線斜率的關系,屬于基礎題.12、【解析】

利用向量夾角的坐標公式即可計算.【詳解】.【點睛】本題主要考查了向量夾角公式的坐標運算,屬于容易題.13、【解析】

利用類比推理分析,若數(shù)列是各項均為正數(shù)的等比數(shù)列,則當時,數(shù)列也是等比數(shù)列.【詳解】由數(shù)列是等差數(shù)列,則當時,數(shù)列也是等差數(shù)列.類比上述性質(zhì),若數(shù)列是各項均為正數(shù)的等比數(shù)列,則當時,數(shù)列也是等比數(shù)列.故答案為:【點睛】類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).14、【解析】

由,根據(jù)基本不等式即可得出,然后根據(jù)對數(shù)函數(shù)的單調(diào)性即可得出,即求出原函數(shù)的值域.【詳解】解:,當且僅當,時取等號,;原函數(shù)的值域是.故答案為:.【點睛】考查函數(shù)的值域的定義及求法,基本不等式的應用,以及對數(shù)函數(shù)的單調(diào)性,增函數(shù)的定義.15、1【解析】

利用方差的性質(zhì)直接求解.【詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【點睛】本題考查方差的求法,考查方差的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.16、【解析】

由圖可知,由勾股定理可得,利用等差數(shù)列的通項公式求解即可.【詳解】根據(jù)圖形,因為都是直角三角形,,是以1為首項,以1為公差的等差數(shù)列,,,故答案為.【點睛】本題主要考查歸納推理的應用,等差數(shù)列的定義與通項公式,以及數(shù)形結合思想的應用,意在考查綜合應用所學知識解答問題的能力,屬于與中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用求出數(shù)列的通項公式;(2)利用累加法求數(shù)列的通項公式;【詳解】解:(1)①當時,即當時,②①減②得經(jīng)檢驗時,成立故(2)()……將上述式相加可得【點睛】本題考查作差法求數(shù)列的通項公式以及累加法求數(shù)列的通項公式,屬于基礎題.18、(1);(2).【解析】

(1)根據(jù)題意求出,即可求解;(2)向量與的夾角的余弦值為:代入求值即可得解.【詳解】(1)由題:,解得:(2)向量與的夾角的余弦值為:【點睛】此題考查平面向量數(shù)量積的運算,根據(jù)運算法則求解數(shù)量積和模長,求解向量夾角的余弦值.19、(1);(2),.【解析】

(1)設的公差為,則由已知條件得,.化簡得解得故通項公式,即.(2)由(1)得.設的公比為,則,從而.故的前項和.20、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由題意結合正弦定理邊化角結合同角三角函數(shù)基本關系可得,則B=.(Ⅱ)在△ABC中,由余弦定理可得b=.結合二倍角公式和兩角差的正弦公式可得詳解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因為,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因為a<c,故.因此,所以,點睛:在處理三角形中的邊角關系時,一般全部化為角的關系,或全部化為邊的關系.題中若出現(xiàn)邊的一次式一般采用到正弦定理,出現(xiàn)邊的二次式一般采用到余弦定理.應用正、余弦定理時,注意公式變式的應用.解決三角形問題時,注意角的限制范圍.21、(1)(2)【解析】

(1)根據(jù),由正弦定理化角為邊,得,再根據(jù)余弦定理即可求出角C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論