2023-2024學年西藏林芝市第二高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023-2024學年西藏林芝市第二高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023-2024學年西藏林芝市第二高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023-2024學年西藏林芝市第二高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023-2024學年西藏林芝市第二高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年西藏林芝市第二高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用數(shù)學歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.2.已知函數(shù),其中為整數(shù),若在上有兩個不相等的零點,則的最大值為()A. B. C. D.3.若程序框圖如圖所示,則該程序運行后輸出k的值是()A.5 B.6 C.7 D.84.延長正方形的邊至,使得.若動點從點出發(fā),沿正方形的邊按逆時針方向運動一周回到點,若,下列判斷正確的是()A.滿足的點必為的中點B.滿足的點有且只有一個C.的最小值不存在D.的最大值為5.若點共線,則的值為()A. B. C. D.6.在各項均為正數(shù)的等比數(shù)列中,公比,若,,,數(shù)列的前項和為,則取最大值時,的值為()A. B. C. D.或7.設(shè)偶函數(shù)定義在上,其導數(shù)為,當時,,則不等式的解集為()A. B.C. D.8.橢圓中以點M(1,2)為中點的弦所在直線斜率為()A. B. C. D.9.已知,,則()A. B. C. D.10.在ΔABC中,如果A=45°,c=6,A.無解 B.一解 C.兩解 D.無窮多解二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),的值域是________.12.已知無窮等比數(shù)列的所有項的和為,則首項的取值范圍為_____________.13.已知正三棱錐的底面邊長為,側(cè)棱長為2,則該三棱錐的外接球的表面積_____.14.在200m高的山頂上,測得山下一塔頂與塔底的俯角分別是30°,60°,則塔高為15.已知扇形的圓心角為,半徑為,則扇形的面積.16.若、分別是方程的兩個根,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓(為坐標原點),直線.(1)過直線上任意一點作圓的兩條切線,切點分別為,求四邊形面積的最小值.(2)過點的直線分別與圓交于點(不與重合),若,試問直線是否過定點?并說明理由.18.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知,,.(1)求邊c的值;(2)求的面積19.在中,內(nèi)角,,的對邊分別為,,.已知,,且的面積為.(1)求的值;(2)求的周長.20.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.(1)求的值;(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

分別求出n=k時左端的表達式,和n=k+1時左端的表達式,比較可得“n從k到k+1”左端需增乘的代數(shù)式.【詳解】當n=k時,左端=(k+1)(k+2)(k+3)…(2k),當n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C.【點睛】本題考查用數(shù)學歸納法證明等式,分別求出n=k時左端的表達式和n=k+1時左端的表達式,是解題的關(guān)鍵.2、A【解析】

利用一元二次方程根的分布的充要條件得到關(guān)于的不等式,再由為整數(shù),可得當取最小時,取最大,從而求得答案.【詳解】∵在上有兩個不相等的零點,∴∵,∴當取最小時,取最大,∵兩個零點的乘積小于1,∴,∵為整數(shù),令時,,滿足.故選:A.【點睛】本題考查一元二次函數(shù)的零點,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意為整數(shù)的應用.3、A【解析】試題分析:第一次循環(huán)運算:;第二次:;第三次:;第四次:;第五次:,這時符合條件輸出,故選A.考點:算法初步.4、D【解析】試題分析:設(shè)正方形的邊長為1,建立如圖所示直角坐標系,則的坐標為,則設(shè),由得,所以,當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;由以上討論可知,當時,可為的中點,也可以是點,所以A錯;使的點有兩個,分別為點與中點,所以B錯,當運動到點時,有最小值,故C錯,當運動到點時,有最大值,所以D正確,故選D.考點:向量的坐標運算.【名師點睛】本題考查平面向量線性運算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標化是聯(lián)系圖形與代數(shù)運算的渠道,通過構(gòu)建直角坐標系,使得向量運算完全代數(shù)化,通過加、減、數(shù)乘的運算法則,實現(xiàn)了數(shù)形的緊密結(jié)合,同時將參數(shù)的取值范圍問題轉(zhuǎn)化為求目標函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應用.5、A【解析】

通過三點共線轉(zhuǎn)化為向量共線,即可得到答案.【詳解】由題意,可知,又,點共線,則,即,所以,故選A.【點睛】本題主要考查三點共線的條件,難度較小.6、D【解析】

利用等比數(shù)列的性質(zhì)求出、的值,可求出和的值,利用等比數(shù)列的通項公式可求出,由此得出,并求出數(shù)列的前項和,然后求出,利用二次函數(shù)的性質(zhì)求出當取最大值時對應的值.【詳解】由題意可知,由等比數(shù)列的性質(zhì)可得,解得,所以,解得,,,則數(shù)列為等差數(shù)列,,,,因此,當或時,取最大值,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),同時也考查了等差數(shù)列求和以及等差數(shù)列前項和的最值,在求解時將問題轉(zhuǎn)化為二次函數(shù)的最值求解,考查方程與函數(shù)思想的應用,屬于中等題.7、C【解析】構(gòu)造函數(shù),則,所以當時,,單調(diào)遞減,又在定義域內(nèi)為偶函數(shù),所以在區(qū)間單調(diào)遞增,單調(diào)遞減,又等價于,所以解集為.故選C.點睛:本題考查導數(shù)的構(gòu)造法應用.本題中,由條件構(gòu)造函數(shù),結(jié)合函數(shù)性質(zhì),可得抽象函數(shù)在區(qū)間單調(diào)遞增,單調(diào)遞減,結(jié)合函數(shù)草圖,即可解得不等式解集.8、A【解析】

先設(shè)出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【詳解】設(shè)弦的兩端點為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【點睛】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關(guān)系.在解決弦長的中點問題,涉及到“中點與斜率”時常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標聯(lián)系起來,相互轉(zhuǎn)化,達到解決問題的目的,屬于中檔題.9、C【解析】

由放縮法可得出,再利用特殊值法以及不等式的基本性質(zhì)可判斷各選項中不等式的正誤.【詳解】,,可得.取,,,則A、D選項中的不等式不成立;取,,,則B選項中的不等式不成立;且,由不等式的基本性質(zhì)得,C選項中的不等式成立.故選:C.【點睛】本題考查不等式正誤的判斷,一般利用不等式的性質(zhì)或特殊值法進行判斷,考查推理能力,屬于中等題.10、C【解析】

計算出csinA的值,然后比較a、csin【詳解】由題意得csinA=6×2【點睛】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形解的個數(shù)的判斷條件,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用正切函數(shù)在單調(diào)遞增,求得的值域為.【詳解】因為函數(shù)在單調(diào)遞增,所以,,故函數(shù)的值域為.【點睛】本題考查利用函數(shù)的單調(diào)性求值域,注意定義域、值域要寫成區(qū)間的形式.12、【解析】

設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項的和為,則,.當時,則,此時,;當時,則,此時,.因此,首項的取值范圍是.故答案為:.【點睛】本題考查利用無窮等比數(shù)列的和求首項的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.13、.【解析】

由題意推出球心O到四個頂點的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.【詳解】如圖,∵正三棱錐A﹣BCD中,底面邊長為,底面外接圓半徑為側(cè)棱長為2,BE=1,在三角形ABE中,根據(jù)勾股定理得到:高AE得到球心O到四個頂點的距離相等,O點在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半徑為,表面積為:故答案為.【點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.14、【解析】

試題分析:根據(jù)題意,設(shè)塔高為x,則可知,a表示的為塔與山之間的距離,可以解得塔高為.考點:解三角形的運用點評:主要是考查了解三角形中的余弦定理和正弦定理的運用,屬于中檔題.15、【解析】試題分析:由題可知,;考點:扇形面積公式16、【解析】

利用韋達定理可求出和的值,然后利用兩角和的正切公式可計算出的值.【詳解】由韋達定理得,,因此,.故答案為:.【點睛】本題考查利用兩角和的正切公式求值,同時也考查了一元二次方程根與系數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)12;(2)過定點,理由見解析【解析】

(1)由,得過點的切線長,所以四邊形的面積為,即可得到本題答案;(2)設(shè)直線的方程為,則直線的方程為.聯(lián)立方程,消去,整理得,得,,所以,令,即可得到本題答案.【詳解】(1)由題意可得圓心到直線的距離為,從而,則過點的切線長.故四邊形的面積為,即四邊形面積的最小值為12.(2)因為,所以直線與直線的斜率都存在,且不為0.設(shè)直線的方程為,則直線的方程為.聯(lián)立方程,消去,整理得解得或,則.同理可得.所以.令,得,解得.取,可以證得,所以直線過定點.當時,軸,易知與均為正三角形,直線的方程為,也過定點.綜上,直線過定點.【點睛】本題主要考查與橢圓相關(guān)的四邊形面積的范圍問題以及與橢圓有關(guān)的直線過定點問題,聯(lián)立直線方程與橢圓方程,利用韋達定理是解決此類問題的常用方法.18、(1)(2)3【解析】

(1)由可得,利用正弦定理可得,即可求解;(2)先利用余弦定理求得,即可求得,再利用三角形面積公式求解即可【詳解】解:(1)因為,所以,即,則(2)由(1),則,所以,所以【點睛】本題考查利用正弦定理邊角互化,考查利用余弦定理求角,考查三角形面積公式的應用19、(1)(2)【解析】

(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面積公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可計算出a,即得的周長.【詳解】解:(1)因為,所以,.因為,所以,,則.(2)由題意可得,的面積為,即.因為,所以,所以,.由余弦定理可得.故的周長為.【點睛】本題考查用正弦定理和余弦定理解三角形,以及二倍角公式,屬于常考題型.20、(1);(2),乙組加工水平高.【解析】

(1)根據(jù)甲、乙兩組數(shù)據(jù)的平均數(shù)都是并結(jié)合平均數(shù)公式可求出、的值;(2)利用方差公式求出甲、乙兩組數(shù)據(jù)的方差,根據(jù)方差大小來對甲、乙兩組技工的加工水平高低作判斷.【詳解】(1)由于甲組數(shù)據(jù)的平均數(shù)為,即,解得,同理,,解得;(2)甲組的個數(shù)據(jù)分別為:、、、、,由方差公式得,乙組的個數(shù)據(jù)分別為:、、、、,由方差公式得,,因此,乙組技工的技工的加工水平高.【點睛】本題考查莖葉圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論