2024湖北省公務員考試數量關系專項練習題含答案(模擬題)_第1頁
2024湖北省公務員考試數量關系專項練習題含答案(模擬題)_第2頁
2024湖北省公務員考試數量關系專項練習題含答案(模擬題)_第3頁
2024湖北省公務員考試數量關系專項練習題含答案(模擬題)_第4頁
2024湖北省公務員考試數量關系專項練習題含答案(模擬題)_第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024湖北省公務員考試數量關系專項練習題第一部分單選題(200題)1、1806,1510,1214,918,()

A、724

B、722

C、624

D、622

【答案】:答案:D

解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。2、一條馬路的兩邊各立著10盞電燈,現在為了節(jié)省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續(xù)關掉兩盞。問總共有多少種方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。3、某小區(qū)有40%的住戶訂閱日報,有15%的住戶同時訂閱日報和時報,至少有75%的住戶至少訂閱兩種報紙中的一種,問訂閱時報的比例至少為多少?()

A、35%

B、50%

C、55%

D、60%

【答案】:答案:B

解析:設訂閱時報的住戶為x,至少訂閱一種報紙的人數為40%+x-15%。由至少75%的住戶至少訂閱兩種報紙中的一種得,40%+x-15%≥75%,解得x≥50%。故選B。4、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次將相鄰兩個數中后一個數減去前一個數得15,22,29,構成公差為7的等差數列,即所填數字為72+29+7=108。故選C。5、從1開始的第2009個奇數是()。

A、4011

B、4013

C、4015

D、4017

【答案】:答案:D

解析:因為每兩個相鄰的奇數均相差2,而第2009個奇數是第1個奇數1之后的第2008個奇數,那么第2009個奇數應該是1+2008×2=4017。故選D。6、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。7、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。8、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。9、甲種酒精有4升,乙種酒精有6升,混合成的酒精含酒精62%;如果兩種酒精溶液一樣多,混合成的酒精溶液含酒精61%,乙種酒精溶液含有純酒精百分之幾?()

A、56

B、66

C、58

D、64

【答案】:答案:B

解析:設甲種酒精濃度x%,乙種酒精濃度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙種酒精濃度為66%。故選B。10、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。11、1,1,2,6,24,()

A、11

B、50

C、80

D、120

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續(xù)自然數列,即所填數字為24×5=120。故選D。12、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。13、一條馬路的兩邊各立著10盞電燈,現在為了節(jié)省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續(xù)關掉兩盞。問總共有多少種方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。14、119,83,36,47,()

A、-37

B、-11

C、11

D、37

【答案】:答案:B

解析:119=83+36,83=36+47,即所填數字為36-47=-11。故選B。15、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。16、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規(guī)定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續(xù)的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續(xù)的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰(zhàn)兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。17、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。解析:設每個小長方形的長為x厘米、寬為y厘米,由題意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大長方形的面積為12×8×5=480平方厘米。故選C。18、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。19、為幫助果農解決銷路,某企業(yè)年底買了一批水果,平均發(fā)給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發(fā)給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。20、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。21、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。22、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。23、某陶瓷公司要到某地推銷瓷器,公司與該地相距900千米。已知瓷器成本為每件4000元,每件瓷器運費為2.5元/千米。如果在運輸及銷售過程中瓷器的損耗為25%,那么該公司要想實現20%的利潤率,瓷器的零售價應是()元。

A、8000

B、8500

C、9600

D、1000

【答案】:答案:D

解析:以一件瓷器為例,1件瓷器成本為4000元,運費為2.5×900=2250元,則成本為4000+2250=6250元,要想實現20%的利潤率,應收入6250×(1+20%)=7500元;由于損耗,實際的銷售產品數量為1×(1-25%)=75%,所以實際零售價為7500÷75%=1000元。故選D。24、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。25、依法納稅是公民的義務,按規(guī)定,全月工資薪金所得不超過800元的部分不必納稅,超過800元的部分,按下列分段累進計算稅款,某人5月份應交納此項稅款26.78元,則他的當月工資薪金所得介于()。

A、800~900

B、900~1200

C、1200~1500

D、1500~2800

【答案】:答案:C

解析:根據表格:工資中800~1300的部分,需納稅500×5%=25(元);還剩稅款26.78-25=1.78(元),即在1300元以上的部分為(元),則他當月工資薪金為1300+17.8=1317.8(元)。故選C。26、某快速反應部隊運送救災物資到災區(qū)。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區(qū),則機場到災區(qū)的距離是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:設機場到災區(qū)的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。27、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。

A、10萬元/個

B、11萬元/個

C、12萬元/個

D、13萬元/個

【答案】:答案:C

解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。28、4/5,16/17,16/13,64/37,()

A、64/25

B、64/21

C、35/26

D、75/23

【答案】:答案:A

解析:已知數列可轉化為:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比為2的等比數列,分母10,17,26,37,()構成二級等差數列。故第五項的分子應是128,分母是50,約分后為64/25。故選A。29、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。30、-3,-2,1,6,()

A、8

B、11

C、13

D、15

【答案】:答案:C

解析:相鄰兩項之差依次為1,3,5,(7),應填入13。故選C。31、1,2,4,3,5,6,9,18,()

A、14

B、24

C、27

D、36

【答案】:答案:A

解析:位于奇數項的1、4、5、9構成和數列,位于偶數項的2、3、6、18構成積數列,即所填的奇數項應為5+9=14。故選A。32、60名員工投票從甲、乙、丙三人中評選最佳員工,選舉時每人只能投票選舉一人,得票最多的人當選。開票中途累計,前30張選票中,甲得15票,乙得10票,丙得5票。問在尚未統(tǒng)計的選票中,甲至少再得多少票就一定當選?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:構造最不利,由題意,還剩30名員工沒有投票,考慮最不利的情況,乙對甲的威脅最大,先給乙5張選票,甲乙即各有15張選票,其余25張選票中,甲只要在獲得13張選票就可以確定當選。故選B。33、在一次知識競賽中,甲、乙兩單位平均分為85分,甲單位得分比乙單位高10分,則乙單位得分為()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根據“甲、乙平均分為85分”,可得總分為85×2=170(分)。設乙得分為x,那么甲得分為x+10,由題意有x+x+10=170,解得x=80。故選C。34、2,3,5,7,()

A、8

B、9

C、11

D、12

【答案】:答案:C

解析:2,3,5,7,為連續(xù)的質數數列,7后面質數為11,則所求項為11。故選C。35、當含鹽30%的60千克鹽水蒸發(fā)為含鹽40%的鹽水時,鹽水重量為多少千克?()

A、45

B、50

C、55

D、60

【答案】:答案:A

解析:設蒸發(fā)后鹽水質量為x千克,由鹽水中鹽的質量不變可得,60×30%=40%x,解得x=45。故選A。36、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。37、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。38、1/2,1,1,(),9/11,11/13

A、2

B、3

C、1

D、9

【答案】:答案:C

解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續(xù)質數列。故選C。39、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩(wěn)定玉米價格,向該地投放儲備玉米的數量不能超過()。

A、800噸

B、1080噸

C、1360噸

D、1640噸

【答案】:答案:D

解析:要穩(wěn)定玉米價格,玉米的價格必須調整至正常區(qū)間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。40、1,1,2,6,24,()

A、11

B、50

C、80

D、120

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續(xù)自然數列,即所填數字為24×5=120。故選D。41、84,12,48,30,39,()

A、23

B、36.5

C、34.5

D、43

【答案】:答案:C

解析:依次將相鄰兩個數中前一個數減去后一個數得72,-36,18,-9,構成公比為-0.5的等比數列,即所填數字為39-4.5=34.5。故選C。42、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。43、某班一次數學測試,全班平均91分,其中男生平均88分,女生平均93分,則女生人數是男生人數的多少倍?()

A、0.5

B、1

C、1.5

D、2

【答案】:答案:C

解析:設男生、女生人數分別為x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故選C。44、一人上樓,邊走邊數臺階。從一樓走到四樓,共走了54級臺階。如果每層樓之間的臺階數相同,他一直要走到八樓,問他從一樓到八樓一共要走多少級臺階?()

A、126

B、120

C、114

D、108

【答案】:答案:A

解析:從一樓走到四樓,共走了54級臺階,而他實際走了3層樓的高度,所以每層樓的臺階數為54÷3=18級。他從一樓到八樓一共要走7層樓,因此共要走7×18=126級臺階。故選A。45、設袋中裝有標著數字為1,2,…,8等8個簽,并規(guī)定標有數字1,4,7的為中獎號。甲、乙、丙、丁

4人依次從袋中隨機抽取一個簽、已知丙中獎了、則乙不中獎的概率為多少?()

A、5/8

B、3/7

C、3/8

D、5/7

【答案】:答案:D

解析:已知丙中獎,則剩余7個簽,還有2個是中獎號,可得乙不中獎概率為。故選D。46、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。47、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。48、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。49、60名員工投票從甲、乙、丙三人中評選最佳員工,選舉時每人只能投票選舉一人,得票最多的人當選。開票中途累計,前30張選票中,甲得15票,乙得10票,丙得5票。問在尚未統(tǒng)計的選票中,甲至少再得多少票就一定當選?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:構造最不利,由題意,還剩30名員工沒有投票,考慮最不利的情況,乙對甲的威脅最大,先給乙5張選票,甲乙即各有15張選票,其余25張選票中,甲只要在獲得13張選票就可以確定當選。故選B。50、2,14,84,420,1680,()

A、2400

B、3360

C、4210

D、5040

【答案】:答案:D

解析:兩兩做商得到7,6,5,4,按此規(guī)律下一項為3,所以所求項為1680×3=5040。故選D。51、從A地到B地為上坡路。自行車選手從A地出發(fā)按A-B-A-B的路線行進,全程平均速度為從B地出發(fā),按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。52、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。53、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。54、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余幾?()

A、1

B、2

C、3

D、4

【答案】:答案:D

解析:a除以5余1,假設a=6;b除以5余4,假設b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故選D。55、甲、乙兩人在一條400米的環(huán)形跑道上從相距200米的位置出發(fā),同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:環(huán)形同點同向出發(fā)每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。56、2,4,12,32,88,()

A、140

B、180

C、220

D、240

【答案】:答案:D

解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三項=2×(第一項+第二項),即所填數字為2×(88+32)=240。故選D。57、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()

A、黃

B、紅

C、綠

D、紫

【答案】:答案:A

解析:根據“按照紅、黃、綠、紫”可知,四個顏色為一個周期,則58÷4=14...2,故第58面旗是14個周期后的第二面,即為黃色。故選A。58、187,259,448,583,754,()

A、847

B、862

C、915

D、944

【答案】:答案:B

解析:各項數字和均為16。故選B。59、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續(xù)自然數。故選A。60、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。61、1,6,5,7,2,8,6,9,()

A、1

B、2

C、3

D、4

【答案】:答案:C

解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。62、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。63、某機場一條自行人行道長42m,運行速度0.75m/s。小王在自行人行道的起始點將一件包裹通過自動人行道傳遞給位于終點位置的小明。小明為了節(jié)省時間,在包裹開始傳遞時,沿自行人行道逆行領取包裹并返回。假設小明的步行速度是1m/s,則小明拿著包裹并回到自行人行道終點共需要的時間是()。

A、4秒

B、42秒

C、48秒

D、56秒

【答案】:答案:C

解析:小明沿自行人行道走,取到包裹用時為42/(1+0.75)=24秒,小明運動距離24×1=24米,返回時間=24/1=24秒,共用時24+24=48秒。故選C。64、140支社區(qū)足球隊參加全市社區(qū)足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。65、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。66、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。67、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:公比為6的等比數列。故選A。68、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。69、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。70、一條馬路的兩邊各立著10盞電燈,現在為了節(jié)省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續(xù)關掉兩盞。問總共有多少種方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。71、某高速公路收費站對過往車輛的收費標準是:大型車30元/輛、中型車15元/輛、小型車10元/輛。某天,通過收費站的大型車與中型車的數量比是5∶6,中型車與小型車的數量比是4∶11,小型車的通行費總數比大型車的多270元,這天的收費總額是()。

A、7280元

B、7290元

C、7300元

D、7350元

【答案】:答案:B

解析:大、中、小型車的數量比為10∶12∶33。以10輛大型車、12輛中型車、33輛小型車為一組。每組小型車收費比大型車多33×10-10×30=30元。實際多270元,說明共通過了270÷30=9組。每組收費10×30+12×15+33×10=810元,收費總額為9×810=7290元。故選B。72、23,29,31,37,()

A、41

B、40

C、43

D、45

【答案】:答案:A

解析:23,29,31,37為連續(xù)的質數列23,29,31,37,即所填數字為41。故選A。73、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一項-前一項=212,即所填數字為536+212=738。故選B。74、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。75、某快速反應部隊運送救災物資到災區(qū)。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區(qū),則機場到災區(qū)的距離是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:設機場到災區(qū)的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。76、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。77、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。78、某雜志為每篇投稿文章安排兩位審稿人,若都不同意錄用則棄用;若都同意則錄用;若兩人意見不同,則安排第三位審稿人,并根據其意見錄用或棄用,如每位審稿人錄用某篇文章的概率都是60%,則該文章最終被錄用的概率是()。

A、36%

B、50.4%

C、60%

D、64.8%

【答案】:答案:D

解析:根據題意,該文章最終被錄用可分為以下兩種情況:(1)前兩位審稿人都同意,概率為0.6×0.6=0.36;(2)前兩位審稿人只有一人同意且第三位審稿人同意,概率為;故該文章最終被錄用的概率為0.36+0.288=0.648=64.8%。故選D。79、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規(guī)律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。80、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余幾?()

A、1

B、2

C、3

D、4

【答案】:答案:D

解析:a除以5余1,假設a=6;b除以5余4,假設b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故選D。81、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續(xù)的質數列,即所填數字為210×11=2310。故選B。82、一件商品相繼兩次分別按折扣率為10%和20%進行折扣,已知折扣后的售價為540元,那么折扣前的售價為()。

A、600元

B、680元

C、720元

D、750元

【答案】:答案:D

解析:設原售價為x元,利用“折扣后售價為540元”得x(1-10%)(1-20%)=540。解得x=750。故選D。83、修一條公路,甲工程隊單獨做需要40天,乙工程隊單獨做需要24天?,F在兩隊合作,同時從兩端開工,在距中點750米處兩隊相遇。那么這條公路長多少米?()

A、3750

B、3000

C、4000

D、6000

【答案】:答案:D

解析:甲乙效率之比=24:40=3:5,完成的任務量之比3:5、相差2份對應對應750×2=1500米,總任務量8份對應1500×4=6000米。故選D。84、5,4,10,8,15,16,(),()

A、20,18

B、18,32

C、20,32

D、18,36

【答案】:答案:C

解析:從題干中給出的數字不難看出,奇數項5,10,15,(20)構成公差為5的等差數列,偶數項4,8,16,(32)構成公比為2的等比數列。故選C。85、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。86、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。87、某收藏家有三個古董鐘,時針都掉了,只剩下分針,而且都走得較快,每小時分別快2分鐘、6分鐘及12分鐘。如果在中午將這三個鐘的分針都調整指向鐘面的12點位置,多少小時后這3個鐘的分針會指在相同的分鐘位置?

A.24

B.26

C.28

D.30

【答案】:答案:D

解析:由題意可得:假設每小時快2分鐘、快6分鐘、快12分鐘的古董鐘分別為A鐘、B鐘、C鐘,則B鐘與A鐘速度差為分鐘/小時,已知整個鐘盤有60分鐘,即經過小時,B鐘的分針比A鐘的分針恰好多走一圈,且此時兩鐘分針重合,同理,C鐘與A鐘速度差為分鐘/小時,即經過小時,C鐘的分針比A鐘的分針恰好多走一圈,此時兩鐘分針重合,取6和15的最小公倍數30,即經過30小時,B鐘的分針比A鐘的分針恰好多走2圈,C鐘的分針比A鐘的分針恰好多走5圈,且此時三個分針處于同一個位置。故正確答案為D。88、7,21,14,21,63,(),63

A、35

B、42

C、40

D、56

【答案】:答案:B

解析:三個一組,7、21、14中第二個數是第一個數和第三個數的和,即所填數字為63-21=42。故選B。89、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解數列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一項的兩個因子之和分別為3、5、7、9、11、()、15,構成公差為2的等差數列。由此可知,空缺項的兩個因子的和為13,結合選項,只有B項的42=6×7分解后兩個因子的和為13。故選B。90、某單位組織工會活動,30名員工自愿參加做游戲。游戲規(guī)則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。

A、14

B、16

C、18

D、20

【答案】:答案:B

解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。91、0,4,18,48,()

A、96

B、100

C、125

D、136

【答案】:答案:B

解析:思路一:0=0×12;4=1×22;18=2×32;48=3×42;100=4×52。思路二:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100;項數12345;乘以0,2,6,12,20=>作差2,4,6,8。故選B。92、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業(yè)花費3個月時間。開始營業(yè)后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()

A、7

B、8

C、9

D、10

【答案】:答案:A

解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業(yè),營業(yè)后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。93、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。94、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規(guī)定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續(xù)的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續(xù)的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰(zhàn)兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。95、140支社區(qū)足球隊參加全市社區(qū)足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。96、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。97、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()

A、黃

B、紅

C、綠

D、紫

【答案】:答案:A

解析:根據“按照紅、黃、綠、紫”可知,四個顏色為一個周期,則58÷4=14...2,故第58面旗是14個周期后的第二面,即為黃色。故選A。98、3,4,10,33,136,()

A、685

B、424

C、314

D、149

【答案】:答案:A

解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。99、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。

A、10萬元/個

B、11萬元/個

C、12萬元/個

D、13萬元/個

【答案】:答案:C

解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。100、一只天平有7克、2克砝碼各一個,如果需要將140克的鹽分成50克、90克各一份,至少要稱幾次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平將140g分成兩份,每份70g;第二步,將其中的一份70g,平均分成兩份35g;第三步,將砝碼分別放在天平的兩邊,將35g鹽放在天平兩邊至平衡,則每邊為(35+7+2)÷2=22g,則砝碼為2g的一邊,鹽就為20g,將其與第一步剩下的70g鹽混合,得到90g,剩下的就是50g。即一共稱了三次。故選D。101、甲、乙和丙三種不同濃度、不同規(guī)格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()

A、1

B、1.3

C、1.6

D、1.9

【答案】:答案:C

解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變?yōu)?0%即可。設加水x,可將濃度為60%的酒精溶液溶度變?yōu)?0%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。102、一艘輪船從甲地到乙地每小時航行30千米,然后按原路返回,若想往返的平均速度為每小時40千米,則返回時每小時航行()千米。

A、80

B、75

C、60

D、96

【答案】:答案:C

解析:設甲乙兩地的距離為1,則輪船從甲地到乙地所用的時間為1/30,如果往返的平均速度為40千米,則往返一次所用的時間為2/40,那么從乙地返回甲地所用時間為2/40-1/30=1/60,所以返回時的速度為每小時1/(1/60)=60千米。故選C。103、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克??芍罱K溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。104、2,3,8,27,32,(),128

A、64

B、243

C、275

D、48

【答案】:答案:B

解析:間隔組合數列。奇數項是公比為4的等比數列,偶數項是公比為9的等比數列,所求項為27×9=(243)。故選B。105、超市有一批酒需要入庫,單獨干這項工作,小明需要15小時,小軍需要18小時。如果小明和小軍一起干了5小時后,剩下的由小軍獨自完成,若這時小軍的效率提高40%,則還需要幾小時才能完成?()

A、5

B、17

C、12

D、11

【答案】:答案:A

解析:設總工作量為90,則小明的效率為6,小軍的效率為5。開始時兩人合作了5個小時,共完成工作量(6+5)×5=55,還剩90-55=35。這時小軍的效率為5×(1+40%)=7,剩下的工作小軍還需35÷7=5小時才能完成。故選A。106、在某企業(yè),40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。107、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次將相鄰兩項作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是連續(xù)自然數的平方。即所填數字為42+21+54+148=239。故選A。108、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。109、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。110、2,6,13,39,15,45,23,()

A、46

B、66

C、68

D、69

【答案】:答案:D

解析:6=2×3,39=13×3,45=15×3。兩個數為一組,每組中的第二個數是第一個數的三倍,即所填數字為23×3=69。故選D。111、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。112、大年三十彩燈懸,彩燈齊明光燦燦,三三數時能數盡,五五數時剩一盞,七七數時剛剛好,八八數時還缺三,請你自己算一算,彩燈至少有多少盞?()

A、21

B、27

C、36

D、42

【答案】:答案:A

解析:由三三數時能數盡、七七數時剛剛好可知,彩燈的數量能同時被3和7整除,排除B、C。又由五五數時剩一盞可知,彩燈的數量除以5余1,排除D。故選A。113、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。114、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。115、12,27,72,(),612

A、108

B、188

C、207

D、256

【答案】:答案:C

解析:(第一項-3)×3=第二項,(72-3)×3=(207),(207-3)×3=612。故選C。116、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。117、3,7,17,115,()

A、132

B、277

C、1951

D、1955

【答案】:答案:C

解析:3×7-4=17,7×17-4=115,即所填數字為17×115-4=1951。故選C。118、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小數點之前滿足規(guī)律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。119、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發(fā)30分鐘,則乙出發(fā)后2小時追上甲;若丙比乙晚出發(fā)20分鐘,則丙出發(fā)后5小時追上乙。若甲出發(fā)10分鐘后乙出發(fā),當乙追上甲時,丙才出發(fā),則丙追上甲所需時間是()。

A、110分鐘

B、150分鐘

C、127分鐘

D、128分鐘

【答案】:答案:B

解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發(fā)10分鐘后乙出發(fā),則乙追上甲的時間為(分鐘),故丙出發(fā)時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。120、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()

A、22

B、25

C、26

D、30

【答案】:答案:C

解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。121、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。122、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。

A、12

B、14

C、13

D、11

【答案】:答案:B

解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。123、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續(xù)的奇數列,另一部分2、3、4、5是連續(xù)的自然數,即所填數字為93+6=735。故選D。124、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協(xié)助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。125、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相鄰的兩項作差,得到8,7,14,10,11,每一個差是原數列中前一項個位數與十位數字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知項為13+94=107。故選A。126、辦公室小李發(fā)現寫字臺上的臺歷很久沒有翻了,就一次翻了7張,這些臺歷的日期數加起來恰好是77,請問這一天是幾號?()

A、14

B、15

C、16

D、17

【答案】:答案:B

解析:翻過去的7天的日期是公差為1的等差數列,和是77,根據等差數列求和公式,可知中位數=77÷7=11,7天中位數是第4天即第4天為11號。第七天是11+(7-4)×1=14號,可知今天是15號。故選B。127、7,9,-1,5,()

A、3

B、-3

C、2

D、-1

【答案】:答案:B

解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故選B。128、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。129、老王和老趙分別參加4門培訓課的考試,兩人的平均分數分別為82和90分,單人的每門成績都為整數且彼此不相等。其中老王成績最高的一門和老趙成績最低的一門課分數相同,問老趙成績最高的一門課最多比老王成績最低的一門課高多少分?()

A、20

B、22

C、24

D、26

【答案】:答案:D

解析:最值問題中構造數列。老趙4門比老王高(90-82)×4=32分。由于老王的成績最高的一門和老趙成績最低的一門相等,而每人的各個成績都不相等,求老趙最高的一門最多比老王成績最低的一門高多少分,則應該使老趙的其他兩門分數盡可能低,而老王的其他兩門分數盡可能高,則可設老王的第三高分數為x,則第二高的分數為x+1,則最高分數為x+2,等于老趙最低的分數x+2,則老趙第三高分數為x+3,第二高分數為x+4,構造完數列后,可以得到老趙的三課的分數比老王高6分,一共高32分,所以老趙最高的一門最多比老王成績最低的一門高32-6=26分。故選D。130、21,59,1117,2325,(),9541

A、3129

B、4733

C、6833

D、8233

【答案】:答案:B

解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。131、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。132、一次數學考試共有20道題,規(guī)定:答對一題得2分,答錯一題扣1分,未答的題不計分。考試結束后,小明共得23分,他想知道自己做錯了幾道題,但只記得未答的題的數目是一個偶數。請你幫助小明計算一下,他答錯了多少道題?()

A、3

B、4

C、5

D、6

【答案】:答案:A

解析:設答對x道,答錯y道,未答z道,根據共有20道題,可得x+y+z=20;由共得23分,可得2x-y=23,由于2x為偶數,23為奇數,故y為奇數,排除B、D。代入A選項,可得2x-3=23,解得x=13,此時z=4,符合未答題目數是偶數。故選A。133、團體操表演中,編號為1~100的學生按順序排成一列縱隊,編號為1的學生拿著紅、黃、藍三種顏色的旗幟,以后每隔2個學生有1人拿紅旗,每隔3個學生有1人拿藍旗,每隔6個學生有1人拿黃旗。問所有學生中有多少人拿兩種顏色以上的旗幟?()

A、13

B、14

C、15

D、16

【答案】:答案:B

解析:每隔n個人意為每(n+1)個人,則拿紅、藍、黃旗的周期分別為3、4、7。除編號為1的學生外還剩99人,同時拿紅、藍旗的編號為12(3和4的公倍數)的倍數,99÷12=8.25,有8人;同理,同時拿紅、黃旗的編號為21(3和7的公倍數)的倍數,99÷21=4.7,有4人;同時拿藍、黃旗的編號為28(4和7的公倍數)的倍數,99÷28=3.5,有3人;同時拿紅藍黃旗的編號為84(3、4和7的公倍數)的倍數,99÷84=1.1,有1人。拿兩種顏色以上的旗幟共有8+4+3+1-2×1=14(人)。故選B。134、0,3,18,33,68,95,()

A、145

B、148

C、150

D、153

【答案】:答案:C

解析:原數列寫為0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19構成的數列奇數項是等差數列,偶數項也是等差數列。故空缺處數字為6×25=150。故選C。135、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續(xù)的質數列,即所填數字為210×11=2310。故選B。136、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。137、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。138、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。139、1,7,8,57,()

A、123

B、122

C、121

D、120

【答案】:答案:C

解析:12+7=8,72+8=57,82+57=121。故選C。140、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。141、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。142、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續(xù)行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。143、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論