2024屆廣東省廣州市高三第二次聯考數學試卷含解析_第1頁
2024屆廣東省廣州市高三第二次聯考數學試卷含解析_第2頁
2024屆廣東省廣州市高三第二次聯考數學試卷含解析_第3頁
2024屆廣東省廣州市高三第二次聯考數學試卷含解析_第4頁
2024屆廣東省廣州市高三第二次聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省廣州市高三第二次聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從含有兩個及以上陽爻的卦中任取兩卦,這兩卦的六個爻中都恰有兩個陽爻的概率為()A. B. C. D.2.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.3.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.4.趙爽是我國古代數學家、天文學家,大約公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.5.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④6.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發(fā)現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.7.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.48.已知函數f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.9.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加10.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且11.已知是邊長為的正三角形,若,則A. B.C. D.12.若的內角滿足,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經過拋物線的焦點,則雙曲線的標準方程為______.14.在一塊土地上種植某種農作物,連續(xù)5年的產量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農作物的年平均產量是______噸.15.已知函數的最小值為2,則_________.16.等腰直角三角形內有一點P,,,,,則面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調查.統計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數為,求的分布列及期望.,其中.18.(12分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.19.(12分)某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.20.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當的面積最小時,求直線的斜率.附:多項式因式分解公式:21.(12分)已知數列為公差不為零的等差數列,是數列的前項和,且、、成等比數列,.設數列的前項和為,且滿足.(1)求數列、的通項公式;(2)令,證明:.22.(10分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

基本事件總數為個,都恰有兩個陽爻包含的基本事件個數為個,由此求出概率.【詳解】解:由圖可知,含有兩個及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個,其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個,所以,所求的概率.故選:B.【點睛】本題滲透傳統文化,考查概率、計數原理等基本知識,考查抽象概括能力和應用意識,屬于基礎題.2、D【解析】

利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.3、B【解析】

根據,可知命題的真假,然后對取值,可得命題的真假,最后根據真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.4、D【解析】

設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題.5、D【解析】

計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.【點睛】本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.6、D【解析】

設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.7、A【解析】

根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.8、A【解析】

先通過降冪公式和輔助角法將函數轉化為,再求最值.【詳解】已知函數f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數的逆用,還考查了運算求解的能力,屬于中檔題.9、C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.10、D【解析】

首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.11、A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.12、A【解析】

由,得到,得出,再結合三角函數的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數的性質,以及三角函數的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設以直線為漸近線的雙曲線的方程為,再由雙曲線經過拋物線焦點,能求出雙曲線方程.【詳解】解:設以直線為漸近線的雙曲線的方程為,∵雙曲線經過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質的合理運用,屬于中檔題.14、10【解析】

根據已知數據直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數,是基礎題.15、【解析】

首先利用絕對值的意義去掉絕對值符號,之后再結合后邊的函數解析式,對照函數值等于2的時候對應的自變量的值,從而得到分段函數的分界點,從而得到相應的等量關系式,求得參數的值.【詳解】根據題意可知,可以發(fā)現當或時是分界點,結合函數的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數的性質,二次函數的性質,函數最值的求解等知識,意在考查學生的轉化能力和計算求解能力.16、【解析】

利用余弦定理計算,然后根據平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有的把握認為喜歡物理與性別有關;(2)分布列見解析,.【解析】

(1)根據題目所給信息,列出列聯表,計算的觀測值,對照臨界值表可得出結論;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、、、.根據計數原理計算出每個所對應的概率,列出分布列計算期望即可.【詳解】(1)根據所給條件得列聯表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點睛】本題考查了獨立性檢驗、離散型隨機變量的概率分布列.離散型隨機變量的期望.屬于中等題.18、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應用題中所給的條件,有效利用,再者就是注意應用反證法證題的步驟;(2)將式子進行相應的代換,結合不等式的性質證得結果;(3)結合題中的條件,應用反證法求得結果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時,有,與矛盾.則.得證.點睛:該題考查的是有關命題的證明問題,在證題的過程中,注意對題中的條件的等價轉化,注意對式子的等價變形,以及證題的思路,要掌握證明問題的方法,尤其是反證法的證題思路以及證明步驟.19、(1),(2)側面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導分析,得在時取得極大值,也是最大值.試題解析:(1)設交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區(qū)間上單調遞增,在區(qū)間上單調遞減,所以在時取得極大值,也是最大值;所以當時,側面積取得最大值,此時等腰三角形的腰長答:側面積取得最大值時,等腰三角形的腰的長度為.20、(1)證明見解析(2)【解析】

(1)由得令可得,進而得到,同理,利用數量積坐標計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標為.聯立方程,消去后整理為有,可得,,.可得點的坐標為.當時,可求得點的坐標為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數單調遞增,可得此時.②當時,由(1)知令由,故當時,,此時函數單調遞增:當時,,此時函數單調遞減,又由,故函數的最小值,函數取最小值時,可求得.由①

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論