版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遵義縣第一中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是非零向量,若,且,則與的夾角為()A. B. C. D.2.某賽季中,甲?乙兩名籃球隊員各場比賽的得分莖葉圖如圖所示,若甲得分的眾數(shù)為15,乙得分的中位數(shù)為13,則()A.15 B.16 C.17 D.183.設(shè)向量,,若三點(diǎn)共線,則()A. B. C. D.24.如圖,水平放置的三棱柱的側(cè)棱長和底邊長均為4,且側(cè)棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為()A. B. C. D.5.在等比數(shù)列中,,,則()A. B.C. D.6.如圖所示,垂直于以為直徑的圓所在的平面,為圓上異于的任一點(diǎn),則下列關(guān)系中不正確的是()A. B.平面 C. D.7.從裝有4個紅球和3個白球的袋中任取2個球,那么下列事件中,是對立事件的是()A.至少有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;恰好有2個白球 D.至少有1個白球;都是白球8.設(shè)是△所在平面上的一點(diǎn),若,則的最小值為A. B. C. D.9.設(shè)等比數(shù)列的前項和為,若,,則()A.63 B.62 C.61 D.6010.在等差數(shù)列中,如果,則數(shù)列前9項的和為()A.297 B.144 C.99 D.66二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,則的前60項和為_____.12.在數(shù)列中,,則______________.13.執(zhí)行如圖所示的程序框圖,則輸出的S的值是______.14.在公比為q的正項等比數(shù)列{an}中,a3=9,則當(dāng)3a2+a4取得最小值時,=_____.15.己知數(shù)列滿足就:,,若,寫出所有可能的取值為______.16.據(jù)兩個變量、之間的觀測數(shù)據(jù)畫成散點(diǎn)圖如圖,這兩個變量是否具有線性相關(guān)關(guān)系_____(答是與否).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖.在四棱錐中,,,平面ABCD,且.,,M、N分別為棱PC,PB的中點(diǎn).(1)證明:A,D,M,N四點(diǎn)共面,且平面ADMN;(2)求直線BD與平面ADMN所成角的正弦值.18.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.設(shè)甲、乙、丙三個乒乓球協(xié)會分別選派3,1,2名運(yùn)動員參加某次比賽,甲協(xié)會運(yùn)動員編號分別為,,,乙協(xié)會編號為,丙協(xié)會編號分別為,,若從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.(1)用所給編號列出所有可能抽取的結(jié)果;(2)求丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率;(3)求參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率.20.已知.(1)求的值;(2)若為第二象限角,且角終邊在上,求的值.21.已知圓的方程為.(1)求過點(diǎn)且與圓相切的直線的方程;(2)直線過點(diǎn),且與圓交于兩點(diǎn),若,求直線的方程;(3)是圓上一動點(diǎn),,若點(diǎn)為的中點(diǎn),求動點(diǎn)的軌跡方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由得,這樣可把且表示出來.【詳解】∵,∴,,∴,∴,故選D.【點(diǎn)睛】本題考查向量的數(shù)量積,掌握數(shù)量積的定義是解題關(guān)鍵.2、A【解析】
由圖可得出,然后可算出答案【詳解】因為甲得分的眾數(shù)為15,所以由莖葉圖可知乙得分?jǐn)?shù)據(jù)有7個,乙得分的中位數(shù)為13,所以所以故選:A【點(diǎn)睛】本題考查的是莖葉圖的知識,較簡單3、A【解析】
利用向量共線的坐標(biāo)表示可得,解方程即可.【詳解】三點(diǎn)共線,,又,,,解得.故選:A【點(diǎn)睛】本題考查了向量共線的坐標(biāo)表示,需掌握向量共線,坐標(biāo)滿足:,屬于基礎(chǔ)題.4、A【解析】
根據(jù)題意,得出該幾何體左視圖的高和寬的長度,求出它的面積,即可求解.【詳解】根據(jù)題意,該幾何體左視圖的高是正視圖的高,所以左視圖的高為,又由左視圖的寬是俯視圖三角形的底邊上的高,所以左視圖的寬為,所以該幾何體的左視圖的面積為,故選A.【點(diǎn)睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實(shí)際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.5、B【解析】
設(shè)等比數(shù)列的公比為,由等比數(shù)列的定義知與同號,再利用等比中項的性質(zhì)可求出的值.【詳解】設(shè)等比數(shù)列的公比為,則,,.由等比中項的性質(zhì)可得,因此,,故選:B.【點(diǎn)睛】本題考查等比中項性質(zhì)的應(yīng)用,同時也要利用等比數(shù)列的定義判斷出項的符號,考查運(yùn)算求解能力,屬于中等題.6、C【解析】
由平面,得,再由,得到平面,進(jìn)而得到,即可判斷出結(jié)果.【詳解】因為垂直于以為直徑的圓所在的平面,即平面,得,A正確;又為圓上異于的任一點(diǎn),所以,平面,,B,D均正確.故選C.【點(diǎn)睛】本題主要考查線面垂直,熟記線面垂直的判定定理與性質(zhì)定理即可,屬于??碱}型.7、A【解析】
根據(jù)對立事件的定義判斷.【詳解】從裝有4個紅球和3個白球的袋內(nèi)任取2個球,在A中,“至少有1個白球”與“都是紅球”不能同時發(fā)生且必有一個事件會發(fā)生,是對立事件.在B中,“至少有1個白球”與“至少有1個紅球”可以同時發(fā)生,不是互斥事件.在C中,“恰好有1個白球”與“恰好有2個白球”是互斥事件,但不是對立事件.在D中,“至少有1個白球”與“都是白球”不是互斥事件.故選:A.8、C【解析】分析:利用向量的加法運(yùn)算,設(shè)的中點(diǎn)為D,可得,利用數(shù)量積的運(yùn)算性質(zhì)可將原式化簡為,為AD中點(diǎn),從而得解.詳解:由,可得.設(shè)的中點(diǎn)為D,即.點(diǎn)P是△ABC所在平面上的任意一點(diǎn),為AD中點(diǎn).∴.當(dāng)且僅當(dāng),即點(diǎn)與點(diǎn)重合時,有最小值.故選C.點(diǎn)睛:(1)應(yīng)用平面向量基本定理表示向量的實(shí)質(zhì)是利用平行四邊形法則或三角形法則進(jìn)行向量的加、減或數(shù)乘運(yùn)算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運(yùn)算來解決.9、A【解析】
由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計算可得.【詳解】因為,,成等比數(shù)列,即3,12,成等比數(shù)列,所以,解得.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)與前項和的計算,考查運(yùn)算求解能力.10、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點(diǎn):等差數(shù)列性質(zhì)及前n項和點(diǎn)評:本題考查了等差數(shù)列性質(zhì)及前n項和,掌握相關(guān)公式及性質(zhì)是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、1830【解析】
由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數(shù)列的結(jié)構(gòu)特征,求出的前60項和.【詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項開始,依次取2個相鄰奇數(shù)項的和都等于2,從第二項開始,依次取2個相鄰偶數(shù)項的和構(gòu)成以8為首項,以16為公差的等差數(shù)列,的前60項和為,故答案為:.【點(diǎn)睛】本題主要考查遞推公式的應(yīng)用,考查利用構(gòu)造等差數(shù)列求數(shù)列的前項和,屬于中檔題.12、20【解析】
首先根據(jù)已知得到:是等差數(shù)列,公差,再計算即可.【詳解】因為,所以數(shù)列是等差數(shù)列,公差..故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列的判斷和等差數(shù)列項的求法,屬于簡單題.13、4【解析】
模擬程序運(yùn)行,觀察變量值的變化,尋找到規(guī)律周期性,確定輸出結(jié)果.【詳解】第1次循環(huán):,;第2次循環(huán):,;第3次循環(huán):,;第4次循環(huán):,;…;S關(guān)于i以4為周期,最后跳出循環(huán)時,此時.故答案為:4.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題關(guān)鍵是由程序確定變量變化的規(guī)律:周期性.14、【解析】
利用等比數(shù)列的性質(zhì),結(jié)合基本不等式等號成立的條件,求得公比,由此求得的值.【詳解】∵在公比為q的正項等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質(zhì)和基本不等式得,當(dāng)且僅當(dāng),即,即q時,3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.15、【解析】(1)若為偶數(shù),則為偶,故①當(dāng)仍為偶數(shù)時,故②當(dāng)為奇數(shù)時,故得m=4。(2)若為奇數(shù),則為偶數(shù),故必為偶數(shù),所以=1可得m=516、否【解析】
根據(jù)散點(diǎn)圖的分布來判斷出兩個變量是否具有線性相關(guān)關(guān)系.【詳解】由散點(diǎn)圖可知,散點(diǎn)圖分布無任何規(guī)律,不在一條直線附近,所以,這兩個變量沒有線性相關(guān)關(guān)系,故答案為否.【點(diǎn)睛】本題考查利用散點(diǎn)圖判斷兩變量之間的線性相關(guān)關(guān)系,考查對散點(diǎn)圖概念的理解,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)先證,再證,即可得證;要證平面ADMN,可通過求證PB垂直于ADMN中的兩條交線來證明(2)求直線BD與平面ADMN所成角,需要找出BD在平面ADMN的射影,可通過三垂線定理去進(jìn)行證明【詳解】解:(1)證明因為M,N分別為PC,PB的中點(diǎn),所以;又因為,所以.從而A,D,M,N四點(diǎn)共面;因為平面ABCD,平面ABCD.所以,又因為,,所以平面PAB,從而,因為,且N為PB的中點(diǎn),所以;又因為,所以平面ADMN;(2)如圖,連結(jié)DN;由(1)知平面ADMN,所以,DN為直線BD在平面ADMN內(nèi)的射影,且,所以,即為直線BD與平面ADMN所成的角:在直角梯形ABCD內(nèi),過C作于H,則四邊形ABCH為矩形;,在中,;所以,,,在中,,,,所以.綜上,直線BD與平面ADMN所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理,考查了線面角的求解方法,考查了運(yùn)算能力及空間想象能力,屬于中檔題.18、(1);(2).【解析】
(1)由遞推公式,再遞推一步,得,兩式相減化簡得,可以判斷數(shù)列是等差數(shù)列,進(jìn)而可以求出等差數(shù)列的通項公式;(2)根據(jù)(1)和對數(shù)的運(yùn)算性質(zhì),用裂項相消法可以求出數(shù)列的前項和.【詳解】解:(1)由知所以,即,從而所以,數(shù)列是以2為公比的等比數(shù)列又可得,綜上所述,故.(2)由(1)可知,故,綜上所述,所以,故而所以.【點(diǎn)睛】本題考查了已知遞推公式求數(shù)列通項公式問題,考查了等差數(shù)列的判斷以及等差數(shù)列的通項公式,考查了用裂項相消法求數(shù)列前項和問題,考查了數(shù)學(xué)運(yùn)算能力.19、(1)15種;(2);(3)【解析】
(1)從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽,利用列舉法即可得到所有可能的結(jié)果.(2利用列舉法得到“丙協(xié)會至少有一名運(yùn)動員參加雙打比賽”的基本事件的個數(shù),利用古典概型,即可求解;(3)由兩名運(yùn)動員來自同一協(xié)會有,,,,共4種,利用古典概型,即可求解.【詳解】(1)由題意,從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽,所有可能的結(jié)果為,,,,,,,,,,,,,,,共15種.(2)因為丙協(xié)會至少有一名運(yùn)動員參加雙打比賽,所以編號為,的兩名運(yùn)動員至少有一人被抽到,其結(jié)果為:設(shè)“丙協(xié)會至少有一名運(yùn)動員參加雙打比賽”為事件,,,,,,,,,,共9種,所以丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率.(3)兩名運(yùn)動員來自同一協(xié)會有,,,,共4種,參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率為.【點(diǎn)睛】本題主要考查了古典概型及其概率的計算問題,其中解答中準(zhǔn)確利用列舉法的基本事件的總數(shù),找出所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(1);(2)【解析】
(1)先根據(jù)誘導(dǎo)公式將原式子化簡,再將已知條件中的表達(dá)式平方,可得到結(jié)果;(2)原式子可化簡為,由已知條件可得到,再由第一問中得到,結(jié)合第一問中的條件可得到結(jié)果.【詳解】(1)=已知,將式子兩邊平方可得到(2)為第二象限角,且角終邊在上,則根據(jù)三角函數(shù)的定義得到原式化簡等于由第一問得到將已知條件均代入可得到原式等于.【點(diǎn)睛】三角函數(shù)求值與化簡必會的三種方法(1)弦切互化法:主要利用公式tanα=;形如,asin2x+bsinxcosx+ccos2x等類型可進(jìn)行弦化切.(2)“1”的靈活代換法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等.(3)和積轉(zhuǎn)換法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的關(guān)系進(jìn)行變形、轉(zhuǎn)化.21、(1)和;(2)或;(3)【解析】
(1)分斜率存在和不存在兩種情況討論,利用直線與圓相切時,圓心到直線的距離等于半徑求解;(2)根據(jù)弦長,可求圓心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《西方法律思想史》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《生態(tài)工程學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《基礎(chǔ)工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《電子技術(shù)》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《信號變換》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《計算機(jī)網(wǎng)絡(luò)與通信》2022-2023學(xué)年期末試卷
- 溫病息風(fēng)止痙法
- 消毒設(shè)備維護(hù)管理
- 沈陽理工大學(xué)《光纖傳感技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣告合同高空作業(yè)免責(zé)協(xié)議書
- 發(fā)現(xiàn)生活中的美-完整版PPT
- 小學(xué)道德與法治人教三年級上冊第三單元安全護(hù)我成長-《遭遇陌生人》教案
- CAMDS操作方法及使用技巧
- 平狄克《微觀經(jīng)濟(jì)學(xué)》(第8版)筆記和課后習(xí)題詳解
- 最優(yōu)化理論與算法課程教學(xué)大綱
- 2022年湖北省武漢市江岸區(qū)育才第二小學(xué)六上期中數(shù)學(xué)試卷
- (最新版)中小學(xué)思政課一體化建設(shè)實(shí)施方案三篇
- PSA提氫裝置操作規(guī)程
- 水工隧洞概述(67頁清楚明了)
- 計算機(jī)維修工技能考核試卷
- 2020年四川省德陽市高三一診考試地理試卷(Word版,含答案)
評論
0/150
提交評論