版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省恩施州巴東三中2023-2024學(xué)年高一下數(shù)學(xué)期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某學(xué)校禮堂有30排座位,每排有20個座位,一次心理講座時禮堂中坐滿了學(xué)生,會后為了了解有關(guān)情況,留下座位號是15的30名學(xué)生,這里運用的抽樣方法是()A.抽簽法 B.隨機數(shù)法 C.系統(tǒng)抽樣 D.分層抽樣2.為了得到函數(shù)的圖像,只需把函數(shù)的圖像A.向左平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向右平移個長度單位3.已知向量,,若,,則的最大值為()A. B. C.4 D.54.過△ABC的重心任作一直線分別交邊AB,AC于點D、E.若,,,則的最小值為()A.4 B.3 C.2 D.15.如果,且,那么下列不等式成立的是()A. B. C. D.6.已知向量、的夾角為,,,則()A. B. C. D.7.已知數(shù)列,其前n項和為,且,則的值是()A.4 B.8 C.2 D.98.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲1000個點,己知恰有400個點落在陰影部分,據(jù)此可估計陰影部分的面積是A.2 B.3 C.10 D.159.已知,則等于()A. B. C. D.310.已知直線與直線平行,則實數(shù)k的值為()A.-2 B.2 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在的值域是__________________.12.函數(shù)的定義域為____________.13.已知等差數(shù)列的前項和為,若,則=_______14.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為________.15.已知中,內(nèi)角A,B,C的對邊分別為a,b,c,,,則的面積為______;16.已知數(shù)列滿足,,,則數(shù)列的通項公式為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在一個周期內(nèi)的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調(diào)遞增區(qū)間.18.已知函數(shù).(1)當時,判斷并證明函數(shù)的奇偶性;(2)當時,判斷并證明函數(shù)在上的單調(diào)性.19.已知、、是的內(nèi)角,且,.(1)若,求的外接圓的面積:(2)若,且為鈍角三角形,求正實數(shù)的取值范圍.20.已知函數(shù),.(1)求函數(shù)的值域;(2)若恒成立,求m的取值范圍.21.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點P在線段EF上運動,設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】抽名學(xué)生分了組(每排為一組),每組抽一個,符合系統(tǒng)抽樣的定義故選2、B【解析】試題分析:記函數(shù),則函數(shù)∵函數(shù)f(x)圖象向右平移單位,可得函數(shù)的圖象∴把函數(shù)的圖象右平移單位,得到函數(shù)的圖象,故選B.考點:函數(shù)y=Asin(ωx+φ)的圖象變換.3、A【解析】
設(shè),由可得點的軌跡方程,再對兩邊平方,利用一元二次函數(shù)的性質(zhì)求出最大值,即可得答案.【詳解】設(shè),,∵,∴,整理得:.∵,∴,當時,的最大值為,∴的最大值為.故選:A.【點睛】本題考查向量模的最值、模的坐標運算、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的運用.4、B【解析】
利用重心以及向量的三點共線的結(jié)論得到的關(guān)系式,再利用基本不等式求最小值.【詳解】設(shè)重心為,因為重心分中線的比為,則有,,則,又因為三點共線,所以,則,取等號時.故選B.【點睛】(1)三角形的重心是三條中線的交點,且重心分中線的比例為;(2)運用基本不等式時,注意取等號時條件是否成立.5、D【解析】
由,且,可得.再利用不等式的基本性質(zhì)即可得出,.【詳解】,且,.,,因此.故選:.【點睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.6、B【解析】
利用平面向量數(shù)量積和定義計算出,可得出結(jié)果.【詳解】向量、的夾角為,,,則.故選:B.【點睛】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.7、A【解析】
根據(jù)求解.【詳解】由題得.故選:A【點睛】本題主要考查數(shù)列和的關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、C【解析】
根據(jù)古典概型概率公式以及幾何概型概率公式分別計算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點睛】(1)當試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標系中表示所需要的區(qū)域.9、C【解析】
等式分子分母同時除以即可得解.【詳解】由可得.故選:C.【點睛】本題考查了三角函數(shù)商數(shù)關(guān)系的應(yīng)用,屬于基礎(chǔ)題.10、A【解析】
由兩直線平行的可得:,運算即可得解.【詳解】解:由兩直線平行的判定可得:,解得,故選:A.【點睛】本題考查利用兩直線平行求參數(shù),屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用反三角函數(shù)的性質(zhì)及,可得答案.【詳解】解:,且,,∴,故答案為:【點睛】本題主要考查反三角函數(shù)的性質(zhì),相對簡單.12、【解析】
先將和分別解出來,然后求交集即可【詳解】要使,則有且由得由得因為所以原函數(shù)的定義域為故答案為:【點睛】解三角不等式的方法:1.在單位圓中利用三角函數(shù)線,2.利用三角函數(shù)的圖像13、【解析】
利用等差數(shù)列前項和,可得;利用等差數(shù)列的性質(zhì)可得,然后求解三角函數(shù)值即可.【詳解】等差數(shù)列的前項和為,因為,所以;又,所以.故答案為:.【點睛】本題考查等差數(shù)列的前項和公式和等差數(shù)列的性質(zhì)的應(yīng)用,熟練掌握和若,則是解題的關(guān)鍵.14、【解析】
求出的垂直平分線方程,兩垂直平分線交點為外接圓圓心.再由兩點間距離公式計算.【詳解】由點B(0,),C(2,),得線段BC的垂直平分線方程為x=1,①由點A(1,0),B(0,),得線段AB的垂直平分線方程為②聯(lián)立①②,解得△ABC外接圓的圓心坐標為,其到原點的距離為.故答案為:【點睛】本題考查三角形外接圓圓心坐標,外心是三角形三條邊的中垂線的交點,到三頂點距離相等.15、【解析】
先根據(jù)以及余弦定理計算出的值,再由面積公式即可求解出的面積.【詳解】因為,所以,所以,所以.故答案為:.【點睛】本題考查解三角形中利用余弦定理求角以及面積公式的運用,難度較易.三角形中,已知兩邊的乘積和第三邊所對的角即可利用面積公式求解出三角形面積.16、.【解析】
由題意得出,可得出數(shù)列為等比數(shù)列,確定出該數(shù)列的首項和公比,可求出數(shù)列的通項公式,進而求出數(shù)列的通項公式.【詳解】設(shè),整理得,對比可得,,即,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故答案為.【點睛】本題考查數(shù)列通項的求解,解題時要結(jié)合遞推式的結(jié)構(gòu)選擇合適的方法來求解,同時要注意等差數(shù)列和等比數(shù)列定義的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)由函數(shù)的圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A(chǔ),且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式.(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間.【詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內(nèi)的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A(chǔ)=4,且,∴,∴ω=1.所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調(diào)遞增區(qū)間為.【點睛】本題主要考查由函數(shù)y=Asin(ωx+)的性質(zhì)求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點法作圖求出的值,考查了正弦型函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.18、(1)見解析;(2)見解析.【解析】
(1)將代入函數(shù)的解析式,利用函數(shù)的奇偶性定義來證明出函數(shù)的奇偶性;(2)將函數(shù)的解析式化為,然后利用函數(shù)單調(diào)性的定義證明出函數(shù)在上的單調(diào)性.【詳解】(1)當時,,函數(shù)為上的奇函數(shù).證明如下:,其定義域為,則,故函數(shù)為奇函數(shù);(2)當時,函數(shù)在上單調(diào)遞減.證明如下:,任取,則,又由,則,則有,即.因此,函數(shù)為上的減函數(shù).【點睛】本題考查函數(shù)單調(diào)性與奇偶性的判定與證明,在利用定義證明函數(shù)的單調(diào)性與奇偶性時,要熟悉定義法證明函數(shù)奇偶性與單調(diào)性的基本步驟,考查邏輯推理能力與計算能力,屬于中等題.19、(1)(2)【解析】
(1)根據(jù)同角三角函數(shù)基本關(guān)系先求得,再由正弦定理求得即可;(2)因大小不能確定,故鈍角不能確定,結(jié)合三角形三邊關(guān)系和余弦定理特點即可判斷【詳解】(1)由,又,即,故外接圓的面積為:(2),,,根據(jù)三邊關(guān)系有,當為鈍角時,可得,即,解得,故;當為鈍角時,可得,即,解得,故;綜上可得的范圍是【點睛】本題考查正弦定理的應(yīng)用,余弦定理和三角形中形狀的判斷的關(guān)系,屬于中檔題20、(1);(2)或.【解析】
(1)根據(jù)用配方法求出二次函數(shù)對稱軸橫坐標,可得最小值,再代入端點求得最大值,可得函數(shù)的值域;(2)由(1)可得的最大值為6,轉(zhuǎn)化為求恒成立,求出m的取值范圍即可.【詳解】(1)因為,而,,,所以函數(shù)的值域為.(2)由(1)知,函數(shù)的值域為,所以的最大值為6,所以由得,解得或,故實數(shù)m的取值范圍為或.【點睛】本題考查二次函數(shù)的值域及最值,不等式恒成立求參數(shù)取值范圍,二次函數(shù)最值問題通常求出對稱軸橫坐標代入即可求得最值,由不等式恒成立求參數(shù)取值范圍可轉(zhuǎn)化為函數(shù)最值不等式問題,屬于中等題.21、(1)證明見解析(2)θ最小值為60°【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解?!驹斀狻浚?)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版裝配式廠房買賣合同范本3篇
- 二零二五年方木產(chǎn)業(yè)園區(qū)建設(shè)與購銷合作合同3篇
- 二零二五版快遞物流服務(wù)合同匯編3篇
- 二零二五年度空壓機設(shè)備零配件供應(yīng)與倉儲合同3篇
- 二零二五年文化活動兼職主持人聘任合同范本2篇
- 2025版快遞驛站快遞服務(wù)場地租賃及配套設(shè)施合同模板2篇
- 二零二五年無線基站場地天面租賃及維護合同3篇
- 二零二五版能源企業(yè)安全生產(chǎn)責任合同3篇
- 二零二五版建筑工程混凝土材料綠色認證合同文本2篇
- 二零二五年知識產(chǎn)權(quán)貸款抵押擔保合同標準版2篇
- 團隊成員介紹
- 水泵行業(yè)銷售人員工作匯報
- 《流感科普宣教》課件
- 離職分析報告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理條例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學(xué)寒假作業(yè)1
- 保險產(chǎn)品創(chuàng)新與市場定位培訓(xùn)課件
- (完整文本版)體檢報告單模版
評論
0/150
提交評論