




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古和林格爾縣重點中學(xué)中考四模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.32.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°3.下列計算正確的是()A.(﹣2a)2=2a2 B.a(chǎn)6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a(chǎn)?a2=a24.已知關(guān)于的方程,下列說法正確的是A.當(dāng)時,方程無解B.當(dāng)時,方程有一個實數(shù)解C.當(dāng)時,方程有兩個相等的實數(shù)解D.當(dāng)時,方程總有兩個不相等的實數(shù)解5.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個6.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<27.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.8.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°9.若※是新規(guī)定的某種運算符號,設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-210.若△÷,則“△”可能是()A. B. C. D.11.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.12.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結(jié)果保留根號).14.在平面直角坐標(biāo)系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.15.如圖,直線y=kx與雙曲線y=(x>0)交于點A(1,a),則k=_____.16.如圖,正△ABC的邊長為2,點A、B在半徑為2的圓上,點C在圓內(nèi),將正ΔABC繞點A逆時針針旋轉(zhuǎn),當(dāng)點C第一次落在圓上時,旋轉(zhuǎn)角的正切值為_______________17.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.18.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN20.(6分)計算:()﹣2﹣+(﹣2)0+|2﹣|21.(6分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.22.(8分)列方程或方程組解應(yīng)用題:為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?23.(8分)(8分)如圖,在平面直角坐標(biāo)系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.24.(10分)在矩形中,點在上,,⊥,垂足為.求證.若,且,求.25.(10分)關(guān)于x的一元二次方程有兩個實數(shù)根,則m的取值范圍是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<126.(12分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.27.(12分)甲、乙兩人分別站在相距6米的A、B兩點練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達(dá)式及飛行的最高高度.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
延長BC到E使BE=AD,利用中點的性質(zhì)得到CM=DE=AB,再利用勾股定理進(jìn)行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M(jìn)是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質(zhì),勾股定理,解題關(guān)鍵在于作輔助線.2、D【解析】
根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.3、C【解析】
解:選項A,原式=;選項B,原式=a3;選項C,原式=-2a+2=2-2a;選項D,原式=故選C4、C【解析】當(dāng)時,方程為一元一次方程有唯一解.當(dāng)時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當(dāng)時,方程有兩個相等的實數(shù)解,當(dāng)且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.5、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當(dāng)AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數(shù)共有3個.故選C.考點:等腰三角形的性質(zhì);勾股定理.6、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當(dāng)m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標(biāo)大于-2,當(dāng)m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標(biāo)小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.7、C【解析】
根據(jù)中心對稱圖形的概念進(jìn)行分析.【詳解】A、不是中心對稱圖形,故此選項錯誤;
B、不是中心對稱圖形,故此選項錯誤;
C、是中心對稱圖形,故此選項正確;
D、不是中心對稱圖形,故此選項錯誤;
故選:C.【點睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質(zhì),即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.9、C【解析】解:由題意得:,∴,∴x=±1.故選C.10、A【解析】
直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關(guān)鍵.11、D【解析】
根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關(guān)鍵.12、A【解析】
先計算括號內(nèi)分式的減法,再將除法轉(zhuǎn)化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的混合運算順序和運算法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、一4【解析】
分析:利用特殊三角函數(shù)值,解直角三角形,AM=MD,再用正切函數(shù),利用MB求CM,作差可求DC.【詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【點睛】本題考查了解直角三角形的應(yīng)用,熟練掌握三角函數(shù)的相關(guān)定義以及變形是解題的關(guān)鍵.14、答案不唯一【解析】分析:把y改寫成頂點式,進(jìn)而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉(zhuǎn)化為頂點的平移問題.15、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點A(1,a),∴a=1,k=1.故答案為1.16、3【解析】
作輔助線,首先求出∠DAC的大小,進(jìn)而求出旋轉(zhuǎn)的角度,即可得出答案.【詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉(zhuǎn)角的正切值是33故答案為:33【點睛】此題考查等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),點與圓的位置關(guān)系,解直角三角形,解題關(guān)鍵在于作輔助線.17、1.【解析】
試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).18、①②④.【解析】
根據(jù)菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質(zhì)一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設(shè)△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【點睛】此題考查平行四邊形的性質(zhì)、菱形的判定和性質(zhì)、平行線分線段成比例定理、等高模型等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)解決問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、詳見解析.【解析】
只要證明∠EAM=∠ECN,根據(jù)同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【點睛】本題考查平行線的判定和性質(zhì),解題的關(guān)鍵是熟練掌握平行線的性質(zhì)和判定,屬于中考基礎(chǔ)題.20、2【解析】
直接利用零指數(shù)冪的性質(zhì)以及負(fù)指數(shù)冪的性質(zhì)、絕對值的性質(zhì)、二次根式以及立方根的運算法則分別化簡得出答案.【詳解】解:原式=4﹣3+1+2﹣2=2.【點睛】本題考查實數(shù)的運算,難點也在于對原式中零指數(shù)冪、負(fù)指數(shù)冪、絕對值、二次根式以及立方根的運算化簡,關(guān)鍵要掌握這些知識點.21、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設(shè)AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設(shè)參的數(shù)學(xué)思想,得到BE垂直平分AC是解(1)的關(guān)鍵,得到Rt△ACH∽Rt△BAC是解(2)的關(guān)鍵.22、15千米.【解析】
首先設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意可得等量關(guān)系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據(jù)等量關(guān)系,列出方程,再解即可.【詳解】:解:設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意列方程得:=4×解得:x=15,經(jīng)檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.23、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點坐標(biāo),用待定系數(shù)法求出直線AB和反比例的函數(shù)解析式;(1)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點D的坐標(biāo),從而根據(jù)三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點E,tan∠ABO==,∴OA=1,CE=3,∴點A的坐標(biāo)為(0,1)、點B的坐標(biāo)為C(4,0)、點C的坐標(biāo)為(﹣1,3),設(shè)直線AB的解析式為,則,解得:,故直線AB的解析式為,設(shè)反比例函數(shù)的解析式為(),將點C的坐標(biāo)代入,得3=,∴m=﹣3.∴該反比例函數(shù)的解析式為;(1)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得,可得交點D的坐標(biāo)為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點:反比例函數(shù)與一次函數(shù)的交點問題.24、(1)證明見解析;(2)1【解析】分析:(1)利用“AAS”證△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,據(jù)此知AD=2DF,根據(jù)DF=AB可得答案.詳解:(1)證明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=1.點睛:本題主要考查矩形的性質(zhì),解題的關(guān)鍵是掌握矩形的性質(zhì)和全等三角形的判定與性質(zhì)及直角三角形的性質(zhì).25、C【解析】
利用二次根式有意義的條件和判別式的意義得到,然后解不等式組即可.【詳解】根據(jù)題意得,解得-3≤m≤1.故選C.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時,方程有兩個不相等的兩個實數(shù)根;當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.26、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設(shè)出C點坐標(biāo),利用C點坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標(biāo)的方程,可求得C點坐標(biāo);(3)設(shè)MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標(biāo),過M作MG⊥y軸于點G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標(biāo);當(dāng)P點在第三象限時,同理可求得P點坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寧夏成立精密金屬零部件公司可行性報告模板范本
- 2024-2025學(xué)年高中歷史第六單元現(xiàn)代世界的科技與文化第28課國運興衰系于教育課后篇鞏固探究岳麓版必修3
- 2024-2025學(xué)年高中政治專題1.1揭開貨幣神秘的面紗講基礎(chǔ)版含解析必修1
- 2024-2025學(xué)年高中政治第三單元思想方法與創(chuàng)新意識第九課唯物辯證法的實質(zhì)與核心第1課時矛盾是事物發(fā)展的源泉和動力課時精練含解析新人教版必修4
- 2024-2025學(xué)年高中歷史第三單元近代西方資本主義政治制度的確立與發(fā)展第9課資本主義政治制度在歐洲大陸的擴(kuò)展教案含解析新人教版必修1
- 2024-2025版高中歷史第四單元近代中國反侵略求民主的潮流17解放戰(zhàn)爭練習(xí)含解析新人教版必修1
- 2024-2025學(xué)年高中政治第一單元公民的政治生活第一課生活在人民當(dāng)家作主的國家課時一人民民主專政:本質(zhì)是人民當(dāng)家作主課時精練含解析新人教版必修2
- 2024-2025學(xué)年高中數(shù)學(xué)課時分層作業(yè)25直線與圓的位置關(guān)系含解析新人教A版必修2
- 2024-2025學(xué)年高中生物第三章遺傳和染色體第一節(jié)基因的分離定律第1課時基因的分離定律一知能演練輕巧奪冠蘇教版必修2
- 智能立體車庫建設(shè)項目申請備案可行性研究報告
- 人力資源外包合同范本
- 成人重癥患者顱內(nèi)壓增高防控護(hù)理專家共識2024
- 110KV送出線路工程施工組織設(shè)計方案和對策
- 2024年青島職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 《職業(yè)道德與法治》開學(xué)第一課(導(dǎo)言)(課件)-【中職專用】中職思想政治《職業(yè)道德與法治》高效課堂課件+教案(高教版2023·基礎(chǔ)模塊)
- (正式版)JBT 10437-2024 電線電纜用可交聯(lián)聚乙烯絕緣料
- E-learning平臺使用手冊(培訓(xùn)管理員版)
- 自動化物料編碼規(guī)則
- 小學(xué)音樂教材分析
- 委托收款三方協(xié)議
- 黃岡市2021-2022高一上學(xué)期期末考試數(shù)學(xué)試題及答案
評論
0/150
提交評論