版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
海南省臨高縣新盈中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.關(guān)于的方程在內(nèi)有相異兩實(shí)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知點(diǎn)G為的重心,若,,則=()A. B. C. D.3.的值為A. B. C. D.4.已知直線經(jīng)過(guò)兩點(diǎn),則的斜率為()A. B. C. D.5.在中,,點(diǎn)P是直線BN上一點(diǎn),若,則實(shí)數(shù)m的值是()A.2 B. C. D.6.終邊在軸上的角的集合()A. B.C. D.7.在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),直線:.如果對(duì)任意的點(diǎn)到直線的距離均為定值,則點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為()A. B. C. D.8.若平面∥平面,直線∥平面,則直線與平面的關(guān)系為()A.∥ B. C.∥或 D.9.已知等差數(shù)列an的前n項(xiàng)和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.110.設(shè)全集,集合,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.光線從點(diǎn)射向y軸,經(jīng)過(guò)y軸反射后過(guò)點(diǎn),則反射光線所在的直線方程是________.12.若直線與直線平行,則實(shí)數(shù)a的值是________.13.在平面直角坐標(biāo)系中,角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊過(guò)點(diǎn),則_______;_______.14.已知等差數(shù)列的前項(xiàng)和為,若,則_______.15.函數(shù)的值域是______.16.已知角的終邊上一點(diǎn)P的坐標(biāo)為,則____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù),其中.(1)當(dāng)時(shí),求的最小值;(2)設(shè)函數(shù)恰有兩個(gè)零點(diǎn),且,求的取值范圍.18.如圖,在平行四邊形中,,,,與的夾角為.(1)若,求、的值;(2)求的值;(3)求與的夾角的余弦值.19.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知,,.(1)求邊c的值;(2)求的面積20.記為等差數(shù)列的前項(xiàng)和,已知,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)求,并求的最小值.21.已知函數(shù)的值域?yàn)锳,.(1)當(dāng)?shù)臑榕己瘮?shù)時(shí),求的值;(2)當(dāng)時(shí),在A上是單調(diào)遞增函數(shù),求的取值范圍;(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取得最小值,試探討應(yīng)該滿足的條件.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
將問(wèn)題轉(zhuǎn)化為與有兩個(gè)不同的交點(diǎn);根據(jù)可得,對(duì)照的圖象可構(gòu)造出不等式求得結(jié)果.【詳解】方程有兩個(gè)相異實(shí)根等價(jià)于與有兩個(gè)不同的交點(diǎn)當(dāng)時(shí),由圖象可知:,解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)的圖象應(yīng)用,主要是根據(jù)方程根的個(gè)數(shù)確定參數(shù)范圍,關(guān)鍵是能夠?qū)?wèn)題轉(zhuǎn)化為交點(diǎn)個(gè)數(shù)問(wèn)題,利用數(shù)形結(jié)合來(lái)進(jìn)行求解.2、B【解析】
由重心分中線為,可得,又(其中是中點(diǎn)),再由向量的加減法運(yùn)算可得.【詳解】設(shè)是中點(diǎn),則,又為的重心,∴.故選B.【點(diǎn)睛】本題考查向量的線性運(yùn)算,解題關(guān)鍵是掌握三角形重心的性質(zhì),即重心分中線為兩段.3、B【解析】
試題分析:由誘導(dǎo)公式得,故選B.考點(diǎn):誘導(dǎo)公式.4、A【解析】
直接代入兩點(diǎn)的斜率公式,計(jì)算即可得出答案?!驹斀狻抗蔬xA【點(diǎn)睛】本題考查兩點(diǎn)的斜率公式,屬于基礎(chǔ)題。5、B【解析】
根據(jù)向量的加減運(yùn)算法則,通過(guò),把用和表示出來(lái),即可得到的值.【詳解】在中,,點(diǎn)是直線上一點(diǎn),所以,又三點(diǎn)共線,所以,即.故選:B.【點(diǎn)睛】本題考查實(shí)數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意平面向量加法法則的合理運(yùn)用,屬于基礎(chǔ)題.6、D【解析】
根據(jù)軸線角的定義即可求解.【詳解】A項(xiàng),是終邊在軸正半軸的角的集合;B項(xiàng),是終邊在軸的角的集合;C項(xiàng),是終邊在軸正半軸的角的集合;D項(xiàng),是終邊在軸的角的集合;綜上,D正確.故選:D【點(diǎn)睛】本題主要考查了軸線角的判斷,屬于基礎(chǔ)題.7、B【解析】
利用點(diǎn)到直線的距離公式表示出,由對(duì)任意的點(diǎn)到直線的距離均為定值,從而可得,求得直線的方程,再利用點(diǎn)關(guān)于直線對(duì)稱的性質(zhì)即可得到對(duì)稱點(diǎn)的坐標(biāo)。【詳解】由點(diǎn)到直線的距離公式可得:點(diǎn)到直線的距離由于對(duì)任意的點(diǎn)到直線的距離均為定值,所以,即,所以直線的方程為:設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為故,解得:,所以設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為故答案選B【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于直線對(duì)稱的對(duì)稱點(diǎn)的求法,涉及點(diǎn)到直線的距離,兩直線垂直斜率的關(guān)系,中點(diǎn)公式等知識(shí)點(diǎn),考查學(xué)生基本的計(jì)算能力,屬于中檔題。8、C【解析】
利用空間幾何體,發(fā)揮直觀想象,易得直線與平面的位置關(guān)系.【詳解】設(shè)平面為長(zhǎng)方體的上底面,平面為長(zhǎng)方體的下底面,因?yàn)橹本€∥平面,所以直線通過(guò)平移后,可能與平面平行,也可能平移到平面內(nèi),所以∥或.【點(diǎn)睛】空間中點(diǎn)、線、面位置關(guān)系問(wèn)題,??梢越柚L(zhǎng)方體進(jìn)行研究,考查直觀想象能力.9、B【解析】
直角利用待定系數(shù)法可得答案.【詳解】因?yàn)镾8=8a1+a82【點(diǎn)睛】本題主要考查等差數(shù)列的基本量的相關(guān)計(jì)算,難度不大.10、A【解析】
進(jìn)行交集、補(bǔ)集的運(yùn)算即可.【詳解】?UB={x|﹣2<x<1};∴A∩(?UB)={x|﹣1<x<1}.故選:A.【點(diǎn)睛】考查描述法的定義,以及交集、補(bǔ)集的運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、(或?qū)懗桑窘馕觥?/p>
光線從點(diǎn)射向y軸,即反射光線反向延長(zhǎng)線經(jīng)過(guò)關(guān)于y軸的對(duì)稱點(diǎn),則反射光線通過(guò)和兩個(gè)點(diǎn),設(shè)直線方程求解即可?!驹斀狻坑深}意可知,所求直線方程經(jīng)過(guò)點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)為,則所求直線方程為,即.【點(diǎn)睛】此題的關(guān)鍵點(diǎn)在于物理學(xué)上光線的反射光線和入射光線關(guān)于鏡面對(duì)稱,屬于基礎(chǔ)題目。12、0【解析】
解方程即得解.【詳解】因?yàn)橹本€與直線平行,所以,所以或.當(dāng)時(shí),兩直線重合,所以舍去.當(dāng)時(shí),兩直線平行,滿足題意.故答案為:【點(diǎn)睛】本題主要考查兩直線平行的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.13、【解析】
根據(jù)三角函數(shù)的定義直接求得的值,即可得答案.【詳解】∵角終邊過(guò)點(diǎn),,∴,,,∴.故答案為:;.【點(diǎn)睛】本題考查三角函數(shù)的定義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】
先由題意,得到,求出,再由等差數(shù)列的性質(zhì),即可得出結(jié)果.【詳解】因?yàn)榈炔顢?shù)列的前項(xiàng)和為,若,則,所以,因此.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)的應(yīng)用,熟記等差數(shù)列的求和公式,以及等差數(shù)列的性質(zhì)即可,屬于??碱}型.15、【解析】
將函數(shù)化為的形式,再計(jì)算值域?!驹斀狻恳?yàn)樗浴军c(diǎn)睛】本題考查三角函數(shù)的值域,屬于基礎(chǔ)題。16、【解析】
由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點(diǎn)到原點(diǎn)的距離,,由三角函數(shù)的定義可得,,,此時(shí);故答案為.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)當(dāng)時(shí),利用指數(shù)函數(shù)和二次函數(shù)的圖象與性質(zhì),得到函數(shù)的單調(diào)性,即可求得函數(shù)的最小值;(2)分段討論討論函數(shù)在相應(yīng)的區(qū)間內(nèi)的根的個(gè)數(shù),函數(shù)在時(shí),至多有一個(gè)零點(diǎn),函數(shù)在時(shí),可能僅有一個(gè)零點(diǎn),可能有兩個(gè)零點(diǎn),分別求出的取值范圍,可得解.【詳解】(1)當(dāng)時(shí),函數(shù),當(dāng)時(shí),,由指數(shù)函數(shù)的性質(zhì),可得函數(shù)在上為增函數(shù),且;當(dāng)時(shí),,由二次函數(shù)的性質(zhì),可得函數(shù)在上為減函數(shù),在上為增函數(shù),又由函數(shù),當(dāng)時(shí),函數(shù)取得最小值為;故當(dāng)時(shí),最小值為.(2)因?yàn)楹瘮?shù)恰有兩個(gè)零點(diǎn),所以(?。┊?dāng)時(shí),函數(shù)有一個(gè)零點(diǎn),令得,因?yàn)闀r(shí),,所以時(shí),函數(shù)有一個(gè)零點(diǎn),設(shè)零點(diǎn)為且,此時(shí)需函數(shù)在時(shí)也恰有一個(gè)零點(diǎn),令,即,得,令,設(shè),,因?yàn)椋?,,,?dāng)時(shí),,所以,即,所以在上單調(diào)遞增;當(dāng)時(shí),,所以,即,所以在上單調(diào)遞減;而當(dāng)時(shí),,又時(shí),,所以要使在時(shí)恰有一個(gè)零點(diǎn),則需,要使函數(shù)恰有兩個(gè)零點(diǎn),且,設(shè)在時(shí)的零點(diǎn)為,則需,而當(dāng)時(shí),,所以當(dāng)時(shí),函數(shù)恰有兩個(gè)零點(diǎn),并且滿足;(ⅱ)若當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn),函數(shù)在恰有兩個(gè)零點(diǎn),且滿足,也符合題意,而由(ⅰ)可得,要使當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn),則,要使函數(shù)在恰有兩個(gè)零點(diǎn),則,但不能滿足,所以沒(méi)有的范圍滿足當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn),函數(shù)在恰有兩個(gè)零點(diǎn),且滿足,綜上可得:實(shí)數(shù)的取值范圍為.故得解.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)的應(yīng)用,以及函數(shù)與方程,函數(shù)的零點(diǎn)問(wèn)題的綜合應(yīng)用,屬于難度題,關(guān)鍵在于分析分段函數(shù)在相應(yīng)的區(qū)間內(nèi)的單調(diào)性,以及其圖像趨勢(shì),可運(yùn)用數(shù)形結(jié)合方便求解,注意在討論二次函數(shù)的根的情況時(shí)的定義域?qū)ζ涞挠绊懀?8、(1),;(2);(3).【解析】試題分析:(1)根據(jù)向量的運(yùn)算有,可知,由模長(zhǎng)即可求得、的值;(2)先求得向量,再根據(jù)向量的數(shù)量積及便可求得;(3)由前面的求解可得及,可利用求得向量夾角的余弦值.試題解析:(1)因?yàn)椋约?(2)由向量的運(yùn)算法則知,,所以.(3)因?yàn)榕c的夾角為,所以與的夾角為,又,所以..設(shè)與的夾角為,可得.所以與的夾角的余弦值為.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)睛】本題主要考查向量的運(yùn)算及單位向量,平面任一向量都可用兩個(gè)不共線的單位向量來(lái)表示,其對(duì)應(yīng)坐標(biāo)就是沿單位向量方向上向量的模長(zhǎng);而對(duì)于向量的數(shù)量積,在得知模長(zhǎng)及夾角的情況下,可以用兩向量模長(zhǎng)與夾角余弦三者的乘積來(lái)計(jì)算,也可轉(zhuǎn)化為單位向量的數(shù)量積進(jìn)行求解;而向量夾角的余弦值則經(jīng)常通過(guò)向量的數(shù)量積與向量模長(zhǎng)的比值來(lái)求得.19、(1)(2)3【解析】
(1)由可得,利用正弦定理可得,即可求解;(2)先利用余弦定理求得,即可求得,再利用三角形面積公式求解即可【詳解】解:(1)因?yàn)?所以,即,則(2)由(1),則,所以,所以【點(diǎn)睛】本題考查利用正弦定理邊角互化,考查利用余弦定理求角,考查三角形面積公式的應(yīng)用20、(1),(2),最小值為?1.【解析】
(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項(xiàng)公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質(zhì),可得Sn的最小值.【詳解】(I)設(shè)的公差為d,由題意得.由得d=2.所以的通項(xiàng)公式為.(II)由(I)得.所以當(dāng)n=4時(shí),取得最小值,最小值為?1.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)的和公式,考查了等差數(shù)列前n項(xiàng)和的最值問(wèn)題;求等差數(shù)列前n項(xiàng)和的最值有兩種方法:①函數(shù)法,②鄰項(xiàng)變號(hào)法.21、(1);(2);(3).【解析】
(1)由函數(shù)為偶函數(shù),可得,故,由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣東省安全員-C證考試(專職安全員)題庫(kù)附答案
- 貴州大學(xué)《營(yíng)養(yǎng)咨詢與健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)幼兒師范高等??茖W(xué)校《人力資源管理雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025吉林建筑安全員《A證》考試題庫(kù)及答案
- 貴陽(yáng)學(xué)院《地下結(jié)構(gòu)工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《中國(guó)近現(xiàn)代史史料學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州幼兒師范高等??茖W(xué)?!段璧附虒W(xué)法Ⅲ(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年-河北省安全員考試題庫(kù)
- 2025年山西省安全員C證考試題庫(kù)
- 2025山東建筑安全員-B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 《業(yè)務(wù)員銷售技巧》課件
- 《汽車涂裝》2024-2025學(xué)年第一學(xué)期工學(xué)一體化課程教學(xué)進(jìn)度計(jì)劃表
- 2024年物流運(yùn)輸公司全年安全生產(chǎn)工作計(jì)劃例文(4篇)
- 二零二四年度軟件開(kāi)發(fā)合同:凈水器智能控制系統(tǒng)定制開(kāi)發(fā)協(xié)議3篇
- 糖尿病肌少癥
- 2025年全國(guó)普通話考試題庫(kù)
- 本票投資合同范本
- 《淄博人壽保險(xiǎn)公司績(jī)效考核問(wèn)題及完善建議(5700字論文)》
- 2024年行政崗位(公文處理及常識(shí))知識(shí)考試題庫(kù)與答案
- 2024年全國(guó)國(guó)家版圖知識(shí)競(jìng)賽題庫(kù)及答案(200題)
- 山西省晉中市2023-2024學(xué)年高一上學(xué)期期末考試 數(shù)學(xué) 含解析
評(píng)論
0/150
提交評(píng)論