




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙東北聯(lián)盟2024屆高一數(shù)學第二學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個長方體長、寬分別為5,4,且該長方體的外接球的表面積為,則該長方體的表面積為()A.47 B.60 C.94 D.1982.已知非零向量,滿足,且,則與的夾角為
A. B. C. D.3.一空間幾何體的三視圖如下圖所示,則該幾何體的體積為()A.1 B.3 C.6 D.24.若偶函數(shù)在上是增函數(shù),則()A. B.C. D.不能確定5.在中,已知,且,則的值是()A. B. C. D.6.在四邊形中,,,將沿折起,使平面平面,構成三棱錐,如圖,則在三棱錐中,下列結論正確的是()A.平面平面B.平面平面C.平面平面D.平面平面7.數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,且,則()A. B.C. D.8.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.9.等差數(shù)列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.10.已知角的終邊經(jīng)過點,則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.己知中,角所対的辻分別是.若,=,,則=______.12.已知指數(shù)函數(shù)上的最大值與最小值之和為10,則=____________。13.觀察下列等式:(1);(2);(3);(4),……請你根據(jù)給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復),這個等式可以是__________________.(答案不唯一)14.已知向量,,,則_________.15.已知數(shù)列前項和,則該數(shù)列的通項公式______.16.已知與的夾角為,,,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項和.18.已知向量,.求:(1);(2)與的夾角的余弦值;(3)求的值使與為平行向量.19.在直角坐標系中,以坐標原點為圓心的圓與直線相切。求圓的方程;若圓上有兩點關于直線對稱,且,求直線的方程;20.已知.(1)求的值;(2)求的值.21.如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.(1)求證:AE⊥B1C;(2)求異面直線AE與A1C所成的角的大??;(3)若G為C1C中點,求二面角C-AG-E的正切值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)球的表面積公式求得半徑,利用等于體對角線長度的一半可構造方程求出長方體的高,進而根據(jù)長方體表面積公式可求得結果.【詳解】設長方體高為,外接球半徑為,則,解得:長方體外接球半徑為其體對角線長度的一半解得:長方體表面積本題正確選項:【點睛】本題考查與外接球有關的長方體的表面積的求解問題,關鍵是能夠明確長方體的外接球半徑為其體對角線長度的一半,從而構造方程求出所需的棱長.2、B【解析】
根據(jù)題意,建立與的關系,即可得到夾角.【詳解】因為,所以,則,則,所以,所以夾角為故選B.【點睛】本題主要考查向量的數(shù)量積運算,難度較小.3、D【解析】
幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側棱與底面垂直,這條側棱長是2.【詳解】由三視圖可知,幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側棱與底面垂直,這條側棱長是2.四棱錐的體積是.故選D.【點睛】本題考查由三視圖求幾何體的體積,由三視圖求幾何體的體積,關鍵是由三視圖還原幾何體,同時還需掌握求體積的常用技巧如:割補法和等價轉化法.4、B【解析】
根據(jù)偶函數(shù)性質與冪函數(shù)性質可得.【詳解】偶函數(shù)在上是增函數(shù),則它在上是減函數(shù),所以.故選:B.【點睛】本題考查冪函數(shù)的性質,考查偶函數(shù)性質,屬于基礎題.5、C【解析】
由正弦定理邊角互化思想得,由可得出的三邊長,可判斷出三角形的形狀,由此可得出的值,再利用平面向量數(shù)量積的定義可計算出的值.【詳解】,,,,,,為等腰直角三角形,.因此,,故選C.【點睛】本題考查正弦定理邊角互化思想的應用,同時也考查了平面向量數(shù)量積定義的計算,在求平面向量數(shù)量積的計算時,要注意向量的起點要一致,考查運算求解能力,屬于中等題.6、D【解析】
折疊過程中,仍有,根據(jù)平面平面可證得平面,從而得到正確的選項.【詳解】在直角梯形中,因為為等腰直角三角形,故,所以,故,折起后仍然滿足.因為平面平面,平面,平面平面,所以平面,因平面,所以.又因為,,所以平面,因平面,所以平面平面.【點睛】面面垂直的判定可由線面垂直得到,而線面垂直可通過線線垂直得到,注意面中兩條直線是相交的.由面面垂直也可得到線面垂直,注意線在面內且線垂直于兩個平面的交線.7、B【解析】分析:先根據(jù)等比數(shù)列、等差數(shù)列的通項公式表示出、,然后表示出和,然后二者作差比較即可.詳解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故選B.點睛:本題主要考查了等比數(shù)列的性質.比較兩數(shù)大小一般采取做差的方法.屬于基礎題.8、B【解析】
利用角的關系,再利用兩角差的正切公式即可求出的值.【詳解】因為,且為銳角,則,所以,因為,所以故選B.【點睛】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關系,屬于中檔題.對于給值求值問題,關鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關系,用已知角表示未知角,從而將問題轉化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導公式即可求出.9、A【解析】試題分析:由已知得,a42=a2?a8,又因為{an}【考點】1、等差數(shù)列通項公式;2、等比中項;3、等差數(shù)列前n項和.10、D【解析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點:三角函數(shù)的概念.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
應用余弦定理得出,再結合已知等式配出即可.【詳解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案為1.【點睛】本題考查余弦定理,掌握余弦定理是解題關鍵,解題時不需要求出的值,而是用整體配湊的方法得出配湊出,這樣可減少計算.12、【解析】
根據(jù)和時的單調性可確定最大值和最小值,進而構造方程求得結果.【詳解】當時,在上單調遞增,,解得:或(舍)當時,在上單調遞減,,解得:(舍)或(舍)綜上所述:故答案為:【點睛】本題考查利用函數(shù)最值求解參數(shù)值的問題,關鍵是能夠根據(jù)指數(shù)函數(shù)得單調性確定最值點.13、【解析】
觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關系和補角關系是解題的關鍵,屬于基礎題14、【解析】
根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點睛】本題主要考查了向量的平行,即,若則,屬于基礎題.15、【解析】
由,n≥2時,兩式相減,可得{an}的通項公式;【詳解】∵Sn=2n2(n∈N*),∴n=1時,a1=S1=2;n≥2時,an=Sn﹣=4n﹣2,a1=2也滿足上式,∴an=4n﹣2故答案為【點睛】本題考查數(shù)列的遞推式,考查數(shù)列的通項,屬于基礎題.16、3【解析】
將平方再利用數(shù)量積公式求解即可.【詳解】因為,故.化簡得.因為,故.故答案為:3【點睛】本題主要考查了模長與數(shù)量積的綜合運用,經(jīng)常利用平方去處理.屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)將已知條件湊配成,由此證得數(shù)列為等差數(shù)列.(2)由(1)求得數(shù)列的通項公式,進而求得的表達式,利用分組求和法求得.【詳解】(1)證明:∵∴又∵∴所以數(shù)列是首項為1,公差為2的等差數(shù)列;(2)由(1)知,,所以.所以【點睛】本小題主要考查根據(jù)遞推關系式證明等差數(shù)列,考查分組求和法,屬于中檔題.18、(1)5(2)(3)【解析】
(1)利用向量坐標運算法則,先求出向量的坐標,再求模;(2)利用兩個向量的數(shù)量積的定義和公式,則可求出與的夾角的余弦值;(3)利用兩個向量共線的性質,求出的值.【詳解】(1)向量,,,;(2)設與的夾角為,∵,,,所以,即與的夾角的余弦值為;(3)由題可得:,∵與為平行向量,∴,解得,即滿足使與為平行向量.【點睛】本題主要考查向量的坐標運算,涉及向量的模,數(shù)量積,共線等相關知識,屬于基礎題.19、(1)(2)或【解析】
(1)直接利用點到直線的距離公式求出半徑,即可得出答案。(2)設出直線,求出圓心到直線的距離,利用半弦長直角三角形解出即可。【詳解】解(1),所以圓的方程為(2)由題意,可設直線的方程為則圓心到直線的距離則,即所以直線的方程為或【點睛】本題考查直線與圓的位置關系,屬于基礎題。20、(1);(2)【解析】
試題分析:(1)利用正切的兩角和公式求的值;(2)利用第一問的結果求第二問,但需要先將式子化簡,最后變形成關于的式子,需要運用三角函數(shù)的倍角公式將化成單角的三角函數(shù),然后分子分母都除以,然后代入的值即可.試題解析:(1)由(2)考點:1.正切的兩角和公式;2.正余弦的倍角公式.21、(1)見解析;(2);(3)【解析】
(1)由BB1⊥面ABC及線面垂直的性質可得AE⊥BB1,由AC=AB,E是BC的中點,及等腰三角形三線合一,可得AE⊥BC,結合線面垂直的判定定理可證得AE⊥面BB1C1C,進而由線面垂直的性質得到AE⊥B1C;(2)取B1C1的中點E1,連A1E1,E1C,根據(jù)異面直線夾角定義可得,∠E1A1C是異面直線A與A1C所成的角,設AC=AB=AA1=2,解三角形E1A1C可得答案.(3)連接AG,設P是AC的中點,過點P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC,由直三棱錐的側面與底面垂直,結合面面垂直的性質定理,可得EP⊥平面ACC1A1,進而由二面角的定義可得∠PQE是二面角C-AG-E的平面角.【詳解】證明:(1)因為BB1⊥面ABC,AE?面ABC,所以AE⊥BB1由AB=AC,E為BC的中點得到AE⊥BC∵BC∩BB1=B∴AE⊥面BB1C1C∴AE⊥B1C解:(2)取B1C1的中點E1,連A1E1,E1C,則AE∥A1E1,∴∠E1A1C是異面直線AE與A1C所成的角.設AC=AB=AA1=2,則由∠BAC=90°,可得A1E1=AE=,A1C=2,E1C1=EC=BC=∴E1C==∵在△E1A1C中,cos∠E1A1C==所以異面直線AE與A1C所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工下班免責協(xié)議書(29篇)
- 2025專利授權合同范本
- 中醫(yī)館合作合同標準文本
- 2025【租賃住宅合同書】公寓出租合同書
- 借款協(xié)議債轉股
- 二零二五版資金監(jiān)管三方協(xié)議范例
- 鐵皮石斛基地采購二零二五年
- 二零二五版離婚協(xié)議書細節(jié)協(xié)議
- 二零二五房屋出租代理合同
- 工程項目終止協(xié)議書
- 2024春蘇教版《亮點給力大試卷》數(shù)學六年級下冊(全冊有答案)
- 中考英語語法填空總復習-教學課件(共22張PPT)
- 綜合辦公樓裝飾裝修工程招標文件
- 玻璃體切除手術配合課件
- 手足口病小講課護理課件
- 2024年浙江杭州地鐵運營分公司招聘筆試參考題庫含答案解析
- 《質量檢驗培訓》課件
- 2023版設備管理體系標準
- 獨唱曲 課件-2022-2023學年高中音樂人音版(2019)必修 音樂鑒賞
- 二、問題解決型(指令性目標)QC成果案例
- 2021特種設備管理與使用指導手冊
評論
0/150
提交評論