2024屆山東省萊山一中高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
2024屆山東省萊山一中高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
2024屆山東省萊山一中高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
2024屆山東省萊山一中高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
2024屆山東省萊山一中高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省萊山一中高一數(shù)學(xué)第二學(xué)期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等差數(shù)列中,若,,則()A. B.1 C. D.2.若,則函數(shù)的最小值是()A. B. C. D.3.如圖,在正方體中,,分別是,中點,則異面直線與所成的角是()A. B. C. D.4.已知,則下列不等式成立的是()A. B. C. D.5.已知兩個單位向量的夾角為,則下列結(jié)論不正確的是()A.方向上的投影為 B.C. D.6.單位圓中,的圓心角所對的弧長為()A. B. C. D.7.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.8.已知,,則的值域為()A. B.C. D.9.在ΔABC中,角A,B,C所對的邊分別為a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.10.設(shè)為實數(shù),且,則下列不等式成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線平分圓的周長,則實數(shù)________.12.如圖,曲線上的點與軸的正半軸上的點及原點構(gòu)成一系列正三角形,,,設(shè)正三角形的邊長為(記為),.數(shù)列的通項公式=______.13.已知函數(shù),有以下結(jié)論:①若,則;②在區(qū)間上是增函數(shù);③的圖象與圖象關(guān)于軸對稱;④設(shè)函數(shù),當(dāng)時,.其中正確的結(jié)論為__________.14.已知等比數(shù)列中,若,,則_____.15.函數(shù)的初相是__________.16.在數(shù)列中,是其前項和,若,,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,.(1)求的最小值;(2)求的最小值.18.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到下表數(shù)據(jù):單價(元)銷量(件)且,,(1)已知與具有線性相關(guān)關(guān)系,求出關(guān)于回歸直線方程;(2)解釋回歸直線方程中的含義并預(yù)測當(dāng)單價為元時其銷量為多少?19.已知,,分別為內(nèi)角,,的對邊,且.(1)求角;(2)若,,求邊上的高.20.如圖,在四棱錐中,底面為正方形,平面,,與交于點,,分別為,的中點.(Ⅰ)求證:平面平面;(Ⅱ)求證:∥平面;(Ⅲ)求證:平面.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

運用等差數(shù)列的性質(zhì)求得公差d,再運用通項公式解得首項即可.【詳解】由題意知,所以.故選C.【點睛】本題考查等差數(shù)列的通項公式的運用,等差數(shù)列的性質(zhì),考查運算能力,屬于基礎(chǔ)題.2、B【解析】

直接用均值不等式求最小值.【詳解】當(dāng)且僅當(dāng),即時,取等號.故選:B【點睛】本題考查利用均值不等式求函數(shù)最小值,屬于基礎(chǔ)題.3、D【解析】

如圖,平移直線到,則直線與直線所成角,由于點都是中點,所以,則,而,所以,即,應(yīng)選答案D.4、D【解析】

依次判斷每個選項得出答案.【詳解】A.,取,不滿足,排除B.,取,不滿足,排除C.,當(dāng)時,不滿足,排除D.,不等式兩邊同時除以不為0的正數(shù),成立故答案選D【點睛】本題考查了不等式的性質(zhì),意在考查學(xué)生的基礎(chǔ)知識.5、B【解析】試題分析:A.方向上的投影為,即,所以A正確;B.,所以B錯誤;C.,所以,所以C正確;D.,所以.D正確.考點:向量的數(shù)量積;向量的投影;向量的夾角.點評:熟練掌握數(shù)量積的有關(guān)性質(zhì)是解決此題的關(guān)鍵,尤其要注意“向量的平方就等于其模的平方”這條性質(zhì).6、B【解析】

將轉(zhuǎn)化為弧度,即可得出答案.【詳解】,因此,單位圓中,的圓心角所對的弧長為.故選B.【點睛】本題考查角度與弧度的轉(zhuǎn)化,同時也考查了弧長的計算,考查計算能力,屬于基礎(chǔ)題.7、D【解析】,當(dāng)時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.

故選D.【點睛】本題考查三角函數(shù)恒等變換,其中解題時問題轉(zhuǎn)化為求三角函數(shù)的值域并利用集合關(guān)系是解決問題的關(guān)鍵,8、C【解析】

根據(jù)正弦型函數(shù)的周期性可求得最小正周期,從而可知代入即可求得所有函數(shù)值.【詳解】由題意得,最小正周期:;;;;;且值域為:本題正確選項:【點睛】本題考查正弦型函數(shù)值域問題的求解,關(guān)鍵是能夠確定函數(shù)的最小正周期,從而計算出一個周期內(nèi)的函數(shù)值.9、A【解析】

利用正弦定理asinA=【詳解】在ΔABC中,由正弦定理得asinA=故選:A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎(chǔ)題。10、C【解析】

本題首先可根據(jù)判斷出項錯誤,然后令可判斷出項和項錯誤,即可得出結(jié)果?!驹斀狻恳驗?,所以,故錯;當(dāng)時,,故錯;當(dāng)時,,故錯,故選C?!军c睛】本題考查不等式的基本性質(zhì),主要考查通過不等式性質(zhì)與比較法來比較實數(shù)的大小,可借助取特殊值的方法來進行判斷,是簡單題。二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

由題得圓心在直線上,解方程即得解.【詳解】由題得圓心(1,a)在直線上,所以.故答案為1【點睛】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、【解析】

先得出直線的方程為,與曲線的方程聯(lián)立得出的坐標(biāo),可得出,并設(shè),根據(jù)題中條件找出數(shù)列的遞推關(guān)系式,結(jié)合遞推關(guān)系式選擇作差法求出數(shù)列的通項公式,即利用求出數(shù)列的通項公式?!驹斀狻吭O(shè)數(shù)列的前項和為,則點的坐標(biāo)為,易知直線的方程為,與曲線的方程聯(lián)立,解得,;當(dāng)時,點、,所以,點,直線的斜率為,則,即,等式兩邊平方并整理得,可得,以上兩式相減得,即,易知,所以,即,所以,數(shù)列是等差數(shù)列,且首項為,公差也為,因此,.故答案為:?!军c睛】本題考查數(shù)列通項的求解,根據(jù)已知條件找出數(shù)列的遞推關(guān)系是解題的關(guān)鍵,在求通項公式時需結(jié)合遞推公式的結(jié)構(gòu)選擇合適的方法求解數(shù)列的通項公式,考查分析問題的能力,屬于難題。13、②③④【解析】

首先化簡函數(shù)解析式,逐一分析選項,得到答案.【詳解】①當(dāng)時,函數(shù)的周期為,,或,所以①不正確;②時,,所以是增函數(shù),②正確;③函數(shù)還可以化簡為,所以與關(guān)于軸對稱,正確;④,當(dāng)時,,,④正確故選②③④【點睛】本題考查了三角函數(shù)的化簡和三角函數(shù)的性質(zhì),屬于中檔題型.14、4【解析】

根據(jù)等比數(shù)列的等積求解即可.【詳解】因為,故.又,故.故答案為:4【點睛】本題主要考查了等比數(shù)列等積性的運用,屬于基礎(chǔ)題.15、【解析】

根據(jù)函數(shù)的解析式即可求出函數(shù)的初相.【詳解】,初相為.故答案為:【點睛】本題主要考查的物理意義,屬于簡單題.16、【解析】

令,可求出的值,令,由可求出的表達式,再檢驗是否符合時的表達式,由此可得出數(shù)列的通項公式.【詳解】當(dāng)時,;當(dāng)時,.不適合上式,因此,.故答案為:.【點睛】本題考查利用求數(shù)列的通項公式,一般利用,求解時還應(yīng)對是否滿足的表達式進行驗證,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)64,(2)x+y的最小值為18.【解析】試題分析:(1)利用基本不等式構(gòu)建不等式即可得出;

(2)由,變形得,利用“乘1法”和基本不等式即可得出.試題解析:(1)由,得,又,,故,故,當(dāng)且僅當(dāng)即時等號成立,∴(2)由2,得,則.當(dāng)且僅當(dāng)即時等號成立.∴【點睛】本題考查了基本不等式的應(yīng)用,熟練掌握“乘1法”和變形利用基本不等式是解題的關(guān)鍵.18、(1);(2)銷量為件.【解析】

(1)利用最小二乘法的公式求得與的值,即可求出線性回歸方程;(2)的含義是單價每增加1元,該產(chǎn)品的銷量將減少7件;在(1)中求得的回歸方程中,取求得值,即可得到單價為12元時的銷量.【詳解】(1)由題意得:,,,,關(guān)于回歸直線方程為;(2)的含義是單價每增加元,該產(chǎn)品的銷量將減少件;當(dāng)時,,即當(dāng)單價為元時預(yù)測其銷量為件.【點睛】本題主要考查線性回歸方程的求法—最小二乘法,以及利用線性回歸方程進行預(yù)測估計。19、(1);(2)【解析】

(1)利用正弦定理化簡已知條件,利用三角形內(nèi)角和定理以及兩角和的正弦公式化簡,由此求得,進而求得的大小.(2)利用正弦定理求得,進而求得的大小,由此求得的值,根據(jù)求得邊上的高.【詳解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴設(shè)邊上的高為,則有【點睛】本小題主要考查利用正弦定理進行邊角互化,考查利用正弦定理解三角形,考查三角恒等變換,考查特殊角的三角函數(shù)值,屬于中檔題.20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

(I)通過證明平面來證得平面平面.(II)取中點,連接,通過證明四邊形為平行四邊形,證得,由此證得∥平面.(III)通過證明平面證得,通過計算證明證得,由此證得平面.【詳解】證明:(Ⅰ)因為平面,所以.因為,,所以平面.因為平面,所以平面平面.(Ⅱ)取中點,連結(jié),因為為的中點所以,且.因為為的中點,底面為正方形,所以,且.所以,且.所以四邊形為平行四邊形.所以.因為平面且平面,所以平面.(Ⅲ)在正方形中,,因為平面,所以.因為,所以平面.所以.在△中,設(shè)交于.因為,且分別為的中點,所以.所以.設(shè),由已知,所以.所以.所以.所以,且為公共角,所以△∽△.所以.所以.因為,所以平面.【點睛】本小題主要考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論