河南省各地2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
河南省各地2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
河南省各地2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
河南省各地2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
河南省各地2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省各地2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知tan(α+π5A.1B.-57C.2.已知函數(shù)的最小正周期為,若,則的最小值為()A. B. C. D.3.直線的傾斜角為()A. B. C. D.4.在ΔABC中,a,b,c分別為A,B,C的對邊,如果a,b,c成等差數(shù)列,B=30°,ΔABC的面積為32,那么b=A.1+32 B.1+3 C.5.某單位有職工160人,其中業(yè)務(wù)員有104人,管理人員32人,后勤服務(wù)人員24人,現(xiàn)用分層抽樣法從中抽取一個(gè)容量為20的樣本,則抽取管理人員()A.3人 B.4人 C.7人 D.12人6.已知圓與交于兩點(diǎn),其中一交點(diǎn)的坐標(biāo)為,兩圓的半徑之積為9,軸與直線都與兩圓相切,則實(shí)數(shù)()A. B. C. D.7.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.8.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π49.設(shè),表示兩條直線,,表示兩個(gè)平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.若,則三個(gè)數(shù)的大小關(guān)系是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.=__________.12.用數(shù)學(xué)歸納法證明時(shí),從“到”,左邊需增乘的代數(shù)式是___________.13.已知正三角形的邊長是2,點(diǎn)為邊上的高所在直線上的任意一點(diǎn),為射線上一點(diǎn),且.則的取值范圍是____14.已知直線:與圓交于,兩點(diǎn),過,分別作的垂線與軸交于,兩點(diǎn),若,則__________.15.三菱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,BAA1=CAA1=60°則異面直線AB1與BC1所成角的余弦值為____________.16.如圖,已知,,任意點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,則向量_______(用,表示向量)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知關(guān)于的函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若對任意的恒成立,求實(shí)數(shù)的最大值.18.已知函數(shù).(I)比較,的大小.(II)求函數(shù)的最大值.19.如圖,四棱錐P-ABCD中,底面ABCD,,,,M為線段AD上一點(diǎn),,N為PC的中點(diǎn).(1)證明:平面PAB;(2)求直線AN與平面PMN所成角的余弦值.20.如圖所示,在直三棱柱中,,平面,D為AC的中點(diǎn).(1)求證:平面;(2)求證:平面;(3)設(shè)E是上一點(diǎn),試確定E的位置使平面平面BDE,并說明理由.21.愛心超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份每天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:最高氣溫天數(shù)216362574(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;(2)當(dāng)六月份有一天這種酸奶的進(jìn)貨量為450瓶時(shí),求這一天銷售這種酸奶的平均利潤(單位:元)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=2、A【解析】

由正弦型函數(shù)的最小正周期可求得,得到函數(shù)解析式,從而確定函數(shù)的最大值和最小值;根據(jù)可知和必須為最大值點(diǎn)和最小值點(diǎn)才能夠滿足等式;利用整體對應(yīng)的方式可構(gòu)造方程組求得,;從而可知時(shí)取最小值.【詳解】由最小正周期為可得:,和分別為的最大值點(diǎn)和最小值點(diǎn)設(shè)為最大值點(diǎn),為最小值點(diǎn),當(dāng)時(shí),本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)性質(zhì)的綜合應(yīng)用,涉及到正弦型函數(shù)最小正周期和函數(shù)值域的求解;關(guān)鍵是能夠根據(jù)函數(shù)的最值確定和為最值點(diǎn),從而利用整體對應(yīng)的方式求得結(jié)果.3、D【解析】

求出斜率,根據(jù)斜率與傾斜角關(guān)系,即可求解.【詳解】化為,直線的斜率為,傾斜角為.故選:D.【點(diǎn)睛】本題考查直線方程一般式化為斜截式,求直線的斜率、傾斜角,屬于基礎(chǔ)題.4、B【解析】試題分析:由余弦定理得b2==14ac=32?ac=6,因?yàn)閍??,??考點(diǎn):余弦定理;三角形的面積公式.5、B【解析】

根據(jù)分層抽樣原理求出應(yīng)抽取的管理人數(shù).【詳解】根據(jù)分層抽樣原理知,應(yīng)抽取管理人員的人數(shù)為:故選:B【點(diǎn)睛】本題考查了分層抽樣原理應(yīng)用問題,是基礎(chǔ)題.6、A【解析】

根據(jù)圓的切線性質(zhì)可知連心線過原點(diǎn),故設(shè)連心線,再代入,根據(jù)方程的表達(dá)式分析出是方程的兩根,再根據(jù)韋達(dá)定理結(jié)合兩圓的半徑之積為9求解即可.【詳解】因?yàn)閮汕芯€均過原點(diǎn),有對稱性可知連心線所在的直線經(jīng)過原點(diǎn),設(shè)該直線為,設(shè)兩圓與軸的切點(diǎn)分別為,則兩圓方程為:,因?yàn)閳A與交于兩點(diǎn),其中一交點(diǎn)的坐標(biāo)為.所以①,②.又兩圓半徑之積為9,所以③聯(lián)立①②可知是方程的兩根,化簡得,即.代入③可得,由題意可知,故.因?yàn)榈膬A斜角是連心線所在的直線的傾斜角的兩倍.故,故.故選:A【點(diǎn)睛】本題主要考查了圓的方程的綜合運(yùn)用,需要根據(jù)題意列出對應(yīng)的方程,結(jié)合韋達(dá)定理以及直線的斜率關(guān)系求解.屬于難題.7、D【解析】

利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負(fù)數(shù)舍去)故答案選D【點(diǎn)睛】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應(yīng)用,屬于中檔題.8、D【解析】

由BC=2AC,根據(jù)正弦定理可得:sinA=2sinB,由角【詳解】由于在ΔABC中,有BC=2AC,根據(jù)正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函數(shù)的圖像可得:A∈[故答案選D【點(diǎn)睛】本題考查正弦定理在三角形中的應(yīng)用,以及三角函數(shù)圖像的應(yīng)用,屬于中檔題.9、D【解析】

對選項(xiàng)進(jìn)行一一判斷,選項(xiàng)D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯(cuò);對B,可能在平面內(nèi);對C,與平面可能平行,故C錯(cuò);對D,面面垂直判定定理,故選D.【點(diǎn)睛】本題考查空間中線、面位置關(guān)系,判斷一個(gè)命題為假命題,只要能舉出反例即可.10、A【解析】

根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)比較,b,c的大小即可.【詳解】=log50.2<0,b=20.5>1,0<c=0.52<1,則,故選A.【點(diǎn)睛】本題考查了對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】由對數(shù)的運(yùn)算性質(zhì)可得到,故答案為2.12、.【解析】

從到時(shí)左邊需增乘的代數(shù)式是,化簡即可得出.【詳解】假設(shè)時(shí)命題成立,則,當(dāng)時(shí),從到時(shí)左邊需增乘的代數(shù)式是.故答案為:.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查推理能力與計(jì)算能力,屬于中檔題.13、【解析】

以AB所在的直線為x軸,以AB的中點(diǎn)為坐標(biāo)原點(diǎn),AB的垂線為y軸,建立平面直角坐標(biāo)系,求出A.C,P,Q的坐標(biāo),運(yùn)用平面向量的坐標(biāo)表示和性質(zhì),求出的表達(dá)式,利用判別式法求出的取值范圍.【詳解】以AB所在的直線為x軸,以AB的中點(diǎn)為坐標(biāo)原點(diǎn),AB的垂線為y軸,建立平面直角坐標(biāo)系,如下圖所示:,設(shè),,設(shè),可得,由,可得即,,令,可得,當(dāng)時(shí),成立,當(dāng)時(shí),,即,,即,所以的取值范圍是.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)和運(yùn)算,考查了平面向量模的取值范圍,構(gòu)造函數(shù),利用判別式法求函數(shù)的最值是解題的關(guān)鍵.14、4【解析】

由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因?yàn)椋覉A的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識(shí)知在梯形中,.故答案為4【點(diǎn)睛】解決直線與圓的綜合問題時(shí),一方面,要注意運(yùn)用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準(zhǔn)確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識(shí)使問題較為簡捷地得到解決.15、【解析】

如圖設(shè)設(shè)棱長為1,則,因?yàn)榈酌孢呴L和側(cè)棱長都相等,且所以,所以,,,設(shè)異面直線的夾角為,所以.16、【解析】

先求得,然后根據(jù)中位線的性質(zhì),求得.【詳解】依題意,由于分別是線段的中點(diǎn),故.【點(diǎn)睛】本小題主要考查平面向量減法運(yùn)算,考查三角形中位線,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由時(shí),根據(jù),利用一元二次不等式的解法,即可求解;(Ⅱ)由對任意的恒成立,得到,利用基本不等式求得最小值,即可求解.【詳解】(Ⅰ)由題意,當(dāng)時(shí),函數(shù),由,即,解得或,所以不等式的解集為.(Ⅱ)因?yàn)閷θ我獾暮愠闪?,即,又由,?dāng)且僅當(dāng)時(shí),即時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.【點(diǎn)睛】本題主要考查了一元二次不等式的求解,以及基本不等式的應(yīng)用,其中解答中熟記一元二次不等式的解法,以及合理利用基本不等式求得最小值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(I);(II)時(shí),函數(shù)取得最大值【解析】試題分析:(1)將f(),f()求出大小后比較即可.(2)根據(jù)三角函數(shù)二倍角公式將f(x)化簡,最終化得一個(gè)二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性,由此得到最大值.解:(I)因?yàn)樗砸驗(yàn)?,所以(II)因?yàn)榱?,,所以,因?yàn)閷ΨQ軸,根據(jù)二次函數(shù)性質(zhì)知,當(dāng)時(shí),函數(shù)取得最大值.19、(1)證明見解析;(2)【解析】

(1)如圖所示,為中點(diǎn),連接,證明為平行四邊形得到答案.(2)分別以為軸建立直角坐標(biāo)系,平面的法向量為,計(jì)算向量夾角得到答案.【詳解】(1)如圖所示,為中點(diǎn),連接.為中點(diǎn),N為PC的中點(diǎn),故,,,故,且,故為平行四邊形.故,平面,故平面PAB.(2)中點(diǎn)為,,故,故,底面ABCD,故,.分別以為軸建立直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,取得到,故,故直線AN與平面PMN所成角的余弦值為.【點(diǎn)睛】本題考查了線面平行,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.20、(1)證明見詳解,(2)證明見詳解,(3)當(dāng)為的中點(diǎn)時(shí),平面平面BDE,證明見詳解【解析】

(1)連接與相交于,可得,結(jié)合線面平行的判定定理即可證明平面(2)先證明和即可得出平面,然后可得,又,即可證明平面(3)當(dāng)為的中點(diǎn)時(shí),平面平面BDE,由已知易得,結(jié)合平面可得平面,進(jìn)而根據(jù)面面垂直的判定定理得到結(jié)論.【詳解】(1)如圖,連接與相交于,則為的中點(diǎn)連接,又為的中點(diǎn)所以,又平面,平面所以平面(2)因?yàn)?,所以四邊形為正方形所以又因?yàn)槠矫妫矫嫠运云矫妫杂衷谥比庵?,所以平面?)當(dāng)為的中點(diǎn)時(shí),平面平面BDE因?yàn)榉謩e是的中點(diǎn)所以,因?yàn)槠矫嫠云矫?,又平面所以平面平面BDE【點(diǎn)睛】本題考查的是立體幾何中線面平行和垂直的證明,要求我們要熟悉并掌握平行與垂直有關(guān)的判定定理和性質(zhì)定理,在證明的過程中要注意步驟的完整.21、(1);(2)460元.【解析】

(1)根據(jù)表中的數(shù)據(jù),求得最高氣溫位于區(qū)間和最高氣溫低于20的天數(shù),利用古典概型的概率計(jì)算公式,即可求得相應(yīng)的概率;(2)分別求出溫度不低于、溫度在,以及溫度低于時(shí)的利潤及相應(yīng)的概率,即可求解這一天銷售這種酸奶的平均利潤,得到答案.【詳解】(1)根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論