版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年重慶市綦江區(qū)南州中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖所示是正方體的平面展開(kāi)圖,在這個(gè)正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°2.甲乙兩名同學(xué)6次考試的成績(jī)統(tǒng)計(jì)如右圖,甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標(biāo)準(zhǔn)差分別為則()A. B.C. D.3.設(shè),則下列不等式中正確的是()A. B.C. D.4.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,則()A. B. C. D.5.同時(shí)拋擲兩枚骰子,朝上的點(diǎn)數(shù)之和為奇數(shù)的概率是()A. B. C. D.6.已知a,b為非零實(shí)數(shù),且,則下列不等式一定成立的是()A. B. C. D.7.如圖所示,從氣球上測(cè)得正前方的河流的兩岸,的俯角分別為,,此時(shí)氣球的高度是60m,則河流的寬度等于()A.m B.m C.m D.m8.在中,,則是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形9.已知點(diǎn)是所在平面內(nèi)的一定點(diǎn),是平面內(nèi)一動(dòng)點(diǎn),若,則點(diǎn)的軌跡一定經(jīng)過(guò)的()A.重心 B.垂心 C.內(nèi)心 D.外心10.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂面內(nèi),若飛機(jī)的高度為海拔18km,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過(guò)1min后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?精確到0.1km)()A.11.4 B.6.6C.6.5 D.5.6二、填空題:本大題共6小題,每小題5分,共30分。11.在直角坐標(biāo)系中,已知任意角以坐標(biāo)原點(diǎn)為頂點(diǎn),以軸的非負(fù)半軸為始邊,若其終邊經(jīng)過(guò)點(diǎn),且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.12.函數(shù)的最大值是__________.13.方程,的解集是__________.14.已知函數(shù),則函數(shù)的最小值是___.15.已知直線與軸、軸相交于兩點(diǎn),點(diǎn)在圓上移動(dòng),則面積的最大值和最小值之差為.16.點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,則直線的方程為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角所對(duì)的邊分別為,,,,為的中點(diǎn).(1)求的長(zhǎng);(2)求的值.18.已知,設(shè).(1)若圖象中相鄰兩條對(duì)稱軸間的距離不小于,求的取值范圍;(2)若的最小正周期為,且當(dāng)時(shí),的最大值是,求的解析式,并說(shuō)明如何由的圖象變換得到的圖象.19.求過(guò)點(diǎn)且與圓相切的直線方程.20.已知圓,過(guò)點(diǎn)作直線交圓于、兩點(diǎn).(1)當(dāng)經(jīng)過(guò)圓心時(shí),求直線的方程;(2)當(dāng)直線的傾斜角為時(shí),求弦的長(zhǎng);(3)求直線被圓截得的弦長(zhǎng)時(shí),求以線段為直徑的圓的方程.21.已知圓(1)求圓關(guān)于直線對(duì)稱的圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為8,求直線的方程;(3)當(dāng)取何值時(shí),直線與圓相交的弦長(zhǎng)最短,并求出最短弦長(zhǎng).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
把展開(kāi)圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補(bǔ)角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開(kāi)圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補(bǔ)角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點(diǎn)睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.2、C【解析】
利用甲、乙兩名同學(xué)6次考試的成績(jī)統(tǒng)計(jì)直接求解.【詳解】由甲乙兩名同學(xué)6次考試的成績(jī)統(tǒng)計(jì)圖知:甲組數(shù)據(jù)靠上,乙組數(shù)據(jù)靠下,甲組數(shù)據(jù)相對(duì)集中,乙組數(shù)據(jù)相對(duì)分散分散布,由甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標(biāo)準(zhǔn)差分別為得,.故選:.【點(diǎn)睛】本題考查命題真假的判斷,考查平均數(shù)、的定義和性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3、B【解析】
取,則,,只有B符合.故選B.考點(diǎn):基本不等式.4、B【解析】
由題意和余弦定理可得,再由余弦定理可得,可得角的值.【詳解】在中,,由余弦定理可得,,,又,.故選:.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查了轉(zhuǎn)化思想,屬基礎(chǔ)題.5、A【解析】
分別求出基本事件的總數(shù)和點(diǎn)數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計(jì)算公式求解.【詳解】同時(shí)拋擲兩枚骰子,總共有種情況,朝上的點(diǎn)數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【點(diǎn)睛】本題考查古典概型概率的求法,屬于基礎(chǔ)題.6、C【解析】
,時(shí),、、不成立;利用作差比較,即可求出.【詳解】解:,時(shí),,,故、、不成立;,,.故選:.【點(diǎn)睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.7、A【解析】
在直角三角形中,利用銳角三角函數(shù)求出的長(zhǎng),在直角三角形中,利用銳角三角函數(shù)求出的長(zhǎng),最后利用進(jìn)行求解即可.【詳解】在直角三角形中,.在直角三角形中,.所以有.故選:A【點(diǎn)睛】本題考查了銳角三角函數(shù)的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.8、D【解析】
先由可得,然后利用與三角函數(shù)的和差公式可推出,從而得到是直角三角形【詳解】因?yàn)?,所以所以因?yàn)樗约此运砸驗(yàn)椋砸驗(yàn)?,所以,即是直角三角形故選:D【點(diǎn)睛】要判斷三角形的形狀,應(yīng)圍繞三角形的邊角關(guān)系進(jìn)行思考,主要有以下兩條途徑:①角化邊:把已知條件轉(zhuǎn)化為只含邊的關(guān)系,通過(guò)因式分解、配方等得到邊的對(duì)應(yīng)關(guān)系,從而判斷三角形形狀,②邊化角:把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過(guò)三角恒等變換,得出內(nèi)角的關(guān)系,從而判斷三角形的形狀.9、A【解析】
設(shè)D是BC的中點(diǎn),由,,知,所以點(diǎn)P的軌跡是射線AD,故點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的重心.【詳解】如圖,設(shè)D是BC的中點(diǎn),∵,,∴,即∴點(diǎn)P的軌跡是射線AD,∵AD是△ABC中BC邊上的中線,∴點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的重心.故選:A.【點(diǎn)睛】本題考查三角形五心的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.10、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航線離山頂h=×sin75°≈11.4(km).∴山高為18-11.4=6.6(km).選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點(diǎn):三角函數(shù)的概念.12、【解析】分析:利用兩角和正弦公式簡(jiǎn)化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點(diǎn)睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.13、【解析】
用正弦的二倍角公式展開(kāi),得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點(diǎn)睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.14、5【解析】因?yàn)?,所以,函?shù),當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.點(diǎn)睛:本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.在用基本不等式時(shí),注意"一正二定三相等"這三個(gè)條件,關(guān)鍵是找定值,在本題中,將拆成,湊成定值,再用基本不等式求出最小值.15、15【解析】
解:設(shè)作出與已知直線平行且與圓相切的直線,
切點(diǎn)分別為,如圖所示
則動(dòng)點(diǎn)C在圓上移動(dòng)時(shí),若C與點(diǎn)重合時(shí),
△ABC面積達(dá)到最小值;而C與點(diǎn)重合時(shí),△ABC面積達(dá)到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點(diǎn)
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點(diǎn)、點(diǎn)到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點(diǎn)
∴點(diǎn)、點(diǎn)到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:1516、【解析】
根據(jù)和關(guān)于直線對(duì)稱可得直線和直線垂直且中點(diǎn)在直線上,從而可求得直線的斜率,利用點(diǎn)斜式可得直線方程.【詳解】由,得:且中點(diǎn)坐標(biāo)為和關(guān)于直線對(duì)稱且在上的方程為:,即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)兩點(diǎn)關(guān)于直線對(duì)稱求解直線方程的問(wèn)題,關(guān)鍵是明確兩點(diǎn)關(guān)于直線對(duì)稱則連線與對(duì)稱軸垂直,且中點(diǎn)必在對(duì)稱軸上,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2)【解析】
(1)在中分別利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【詳解】解:(1)在中,由余弦定理得,∴,解得∵為的中點(diǎn),∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【點(diǎn)睛】本題考查解三角形中的正余弦定理的運(yùn)用,難度較易.對(duì)于給定圖形的解三角形問(wèn)題,一定要注意去結(jié)合圖形去分析.18、(1);(2);平移變換過(guò)程見(jiàn)解析.【解析】
(1)根據(jù)平面向量的坐標(biāo)運(yùn)算,表示出的解析式,結(jié)合輔助角公式化簡(jiǎn)三角函數(shù)式.結(jié)合相鄰兩條對(duì)稱軸間的距離不小于及周期公式,即可求得的取值范圍;(2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦函數(shù)的圖象、性質(zhì)與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描述變換過(guò)程.【詳解】∵∴∴(1)由題意可知,∴又,∴(2)∵,∴∴∵,∴∴當(dāng)即時(shí)∴∴將圖象上所有點(diǎn)向右平移個(gè)單位,得到的圖象;再將得到的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到的圖象(或?qū)D象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到的圖象;再將得到的圖象上所有點(diǎn)向右平移個(gè)單位,得到的圖象)【點(diǎn)睛】本題考查了正弦函數(shù)圖像與性質(zhì)的綜合應(yīng)用,根據(jù)最值求三角函數(shù)解析式,三角函數(shù)圖象平移變換過(guò)程,屬于中檔題.19、直線方程為或【解析】
當(dāng)直線的斜率不存在時(shí),直線方程為,滿足題意,當(dāng)直線的斜率存在時(shí),設(shè)出直線的方程,由圓心到直線的距離等于半徑,可解出的值,從而求出方程。【詳解】當(dāng)直線的斜率不存在時(shí),直線方程為,經(jīng)檢驗(yàn),滿足題意.當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,即,圓心到直線的距離等于半徑,即,可解得.即直線為.綜上,所求直線方程為或.【點(diǎn)睛】本題考查了圓的切線的求法,考查了直線的方程,考查了點(diǎn)到直線的距離公式,屬于基礎(chǔ)題。20、(1);(2);(3).【解析】
(1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時(shí),求出直線的斜率,然后求出直線的方程,利用點(diǎn)到直線的距離,半徑,半弦長(zhǎng)的關(guān)系求弦AB的長(zhǎng);(3)利用垂徑公式,明確是的中點(diǎn),進(jìn)而得到以線段為直徑的圓的方程.【詳解】()圓的方程可化為,圓心為,半徑為.當(dāng)直線過(guò)圓心,時(shí),,∴直線的方程為,即.()因?yàn)橹本€的傾斜角為且過(guò),所以直線的方程為,即.圓心到直線的距離,∴弦.()由于,而弦心距,∴,∴是的中點(diǎn).故以線段為直徑的圓圓心是,半徑為.故以線段為直徑的圓的方程為.21、(1);(2)或;(3)【解析】
(1)設(shè),根據(jù)圓心與關(guān)于直線對(duì)稱,列出方程組,求得的值,即可求解;(2)由圓的弦長(zhǎng)公式,求得,根據(jù)斜率分類(lèi)討論,求得直線的斜率,即可求解;(3)由直線,得直線過(guò)定點(diǎn),根據(jù)時(shí),弦長(zhǎng)最短,即可求解.【詳解】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 竹子主題課程設(shè)計(jì)模板
- 職業(yè)溝通-評(píng)價(jià)課程設(shè)計(jì)
- 《圍術(shù)期的容量治療》課件
- 瞬變電磁法課程設(shè)計(jì)
- 2024中級(jí)(四)汽車(chē)修理工理論學(xué)問(wèn)試題
- 簡(jiǎn)單電路課程設(shè)計(jì)
- 網(wǎng)絡(luò)流量監(jiān)測(cè)課程設(shè)計(jì)
- 舞蹈早上好課程設(shè)計(jì)
- 互聯(lián)網(wǎng)服務(wù)行業(yè)營(yíng)業(yè)員工作總結(jié)
- 同心樹(shù)共筑和諧初一班主任第一學(xué)期工作總結(jié)
- 提升極端天氣背景下的城市政府韌性治理能力
- 服務(wù)營(yíng)銷(xiāo)學(xué)教案
- 護(hù)理查房 小兒支氣管肺炎
- 相關(guān)方安全管理培訓(xùn)
- 2023年中國(guó)雪茄煙行業(yè)現(xiàn)狀深度研究與未來(lái)投資預(yù)測(cè)報(bào)告
- 皮帶輸送機(jī)巡檢規(guī)程
- 遼寧省大連市沙河口區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題(含答案)
- 心肺循環(huán)課件
- 東大光明清潔生產(chǎn)審核報(bào)告
- 生產(chǎn)計(jì)劃排產(chǎn)表-自動(dòng)排產(chǎn)
- 管理研究方法論for msci.students maxqda12入門(mén)指南
評(píng)論
0/150
提交評(píng)論