版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省青島市平度第九中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的圖象的相鄰兩支截直線所得的線段長為,則的值是()A.0 B. C.1 D.2.在正三棱錐中,,則側(cè)棱與底面所成角的正弦值為()A. B. C. D.3.在中,角,,所對的邊分別為,,,則下列命題中正確命題的個(gè)數(shù)為()①若,則;②若,則為鈍角三角形;③若,則.A.1 B.2 C.3 D.04.等差數(shù)列中,,則().A.110 B.120 C.130 D.1405.設(shè)函數(shù),則滿足的的取值范圍是()A. B. C. D.6.函數(shù)的部分圖象如圖,則()()A.0 B. C. D.67.執(zhí)行如圖所示的程序框圖,則輸出的()A.3 B.4 C.5 D.68.某學(xué)校高一、高二年級共有1800人,現(xiàn)按照分層抽樣的方法,抽取90人作為樣本進(jìn)行某項(xiàng)調(diào)查.若樣本中高一年級學(xué)生有42人,則該校高一年級學(xué)生共有()A.420人 B.480人 C.840人 D.960人9.若實(shí)數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.10.如果全集,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在直角梯形.中,,分別為的中點(diǎn),以為圓心,為半徑的圓交于,點(diǎn)在上運(yùn)動(dòng)(如圖).若,其中,則的最大值是________.12.若滿足約束條件則的最大值為__________.13.某中學(xué)初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.14.實(shí)數(shù)x、y滿足,則的最大值為________.15.已知直線y=b(0<b<1)與函數(shù)f(x)=sinωx(ω>0)在y軸右側(cè)依次的三個(gè)交點(diǎn)的橫坐標(biāo)為x1=,x2=,x3=,則ω的值為______16.在中,已知,則下列四個(gè)不等式中,正確的不等式的序號為____________①②③④三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的首項(xiàng)為,公比為,它的前項(xiàng)和為.(1)若,,求;(2)若,,且,求.18.如圖,四棱錐中,是正三角形,四邊形ABCD是矩形,且平面平面.(1)若點(diǎn)E是PC的中點(diǎn),求證:平面BDE;(2)若點(diǎn)F在線段PA上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.19.如圖,在四邊形中,.(1)若為等邊三角形,且是的中點(diǎn),求.(2)若,,求.20.在中,角、、的對邊分別為、、,已知.(1)求角的大小;(2)若,點(diǎn)在邊上,且,,求邊的長.21.設(shè)是兩個(gè)相互垂直的單位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)題意可知函數(shù)周期為,利用周期公式求出,計(jì)算即可求值.【詳解】由正切型函數(shù)的圖象及相鄰兩支截直線所得的線段長為知,,所以,,故選C.【點(diǎn)睛】本題主要考查了正切型函數(shù)的周期,求值,屬于中檔題.2、B【解析】
利用正三棱錐的性質(zhì),作出側(cè)棱與底面所成角,利用直角三角形進(jìn)行計(jì)算.【詳解】連接P與底面正△ABC的中心O,因?yàn)槭钦忮F,所以面,所以為側(cè)棱與底面所成角,因?yàn)椋?,所以,故選B.【點(diǎn)睛】本題考查線面角的計(jì)算,考查空間想象能力、邏輯推理能力及計(jì)算求解能力,屬于中檔題.3、C【解析】
根據(jù)正弦定理和大角對大邊判斷①正確;利用余弦定理得到為鈍角②正確;化簡利用余弦定理得到③正確.【詳解】①若,則;根據(jù),則即,即,正確②若,則為鈍角三角形;,為鈍角,正確③若,則即,正確故選C【點(diǎn)睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生對于正弦定理和余弦定理的靈活運(yùn)用.4、B【解析】
直接運(yùn)用等差數(shù)列的下標(biāo)關(guān)系即可求出的值.【詳解】因?yàn)閿?shù)列是等差數(shù)列,所以,因此,故本題選B.【點(diǎn)睛】本題考查了等差數(shù)列下標(biāo)性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.5、C【解析】
利用特殊值,對選項(xiàng)進(jìn)行排除,由此得到正確選項(xiàng).【詳解】當(dāng)時(shí),,由此排除D選項(xiàng).當(dāng)時(shí),,由此排除B選項(xiàng).當(dāng)時(shí),,由此排除A選項(xiàng).綜上所述,本小題選C.【點(diǎn)睛】本小題主要考查分段函數(shù)求值,考查利用特殊值法解選擇題,屬于基礎(chǔ)題.6、D【解析】
先利用正切函數(shù)求出A,B兩點(diǎn)的坐標(biāo),進(jìn)而求出與的坐標(biāo),再代入平面向量數(shù)量積的運(yùn)算公式即可求解.【詳解】因?yàn)閥=tan(x)=0?xkπ?x=4k+2,由圖得x=2;故A(2,0)由y=tan(x)=1?xk?x=4k+3,由圖得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故選D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查了利用正切函數(shù)值求角的運(yùn)算,解決本題的關(guān)鍵在于求出A,B兩點(diǎn)的坐標(biāo),屬于基礎(chǔ)題.7、C【解析】
由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算S的值并輸出相應(yīng)變量n的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】解:模擬程序的運(yùn)行,可得
S=0,n=1
S=2,n=2
滿足條件S<30,執(zhí)行循環(huán)體,S=2+4=6,n=3
滿足條件S<30,執(zhí)行循環(huán)體,S=6+8=14,n=4
滿足條件S<30,執(zhí)行循環(huán)體,S=14+16=30,n=1
此時(shí),不滿足條件S<30,退出循環(huán),輸出n的值為1.
故選C.【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.8、C【解析】
先由樣本容量和總體容量確定抽樣比,用高一年級抽取的人數(shù)除以抽樣比即可求出結(jié)果.【詳解】由題意需要從1800人中抽取90人,所以抽樣比為,又樣本中高一年級學(xué)生有42人,所以該校高一年級學(xué)生共有人.故選C【點(diǎn)睛】本題主要考查分層抽樣,先確定抽樣比,即可確定每層的個(gè)體數(shù),屬于基礎(chǔ)題型.9、D【解析】
根據(jù)題意,由不等式的性質(zhì)依次分析選項(xiàng),綜合即可得答案.【詳解】根據(jù)題意,依次分析選項(xiàng):對于A、,時(shí),有成立,故A錯(cuò)誤;對于B、,時(shí),有成立,故B錯(cuò)誤;對于C、,時(shí),有成立,故C錯(cuò)誤;對于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【點(diǎn)睛】本題考查不等式的性質(zhì),對于錯(cuò)誤的結(jié)論舉出反例即可.10、C【解析】
首先確定集合U,然后求解補(bǔ)集即可.【詳解】由題意可得:,結(jié)合補(bǔ)集的定義可知.本題選擇C選項(xiàng).【點(diǎn)睛】本題主要考查集合的表示方法,補(bǔ)集的定義等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
建立直角坐標(biāo)系,設(shè),根據(jù),表示出,結(jié)合三角函數(shù)相關(guān)知識即可求得最大值.【詳解】建立如圖所示的平面直角坐標(biāo)系:,分別為的中點(diǎn),,以為圓心,為半徑的圓交于,點(diǎn)在上運(yùn)動(dòng),設(shè),,即,,所以,兩式相加:,即,要取得最大值,即當(dāng)時(shí),故答案為:【點(diǎn)睛】此題考查平面向量線性運(yùn)算,處理平面幾何相關(guān)問題,涉及三角換元,轉(zhuǎn)化為求解三角函數(shù)的最值問題.12、【解析】
作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時(shí),.【詳解】不等式組表示的可行域是以為頂點(diǎn)的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點(diǎn)處取得,易知當(dāng)時(shí),.【點(diǎn)睛】線性規(guī)劃問題是高考中常考考點(diǎn),主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.13、【解析】
由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【點(diǎn)睛】考查統(tǒng)計(jì)中讀圖能力,從圖中提取基本信息的基本能力.14、【解析】
根據(jù)約束條件,畫出可行域,將目標(biāo)函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃求最大值,屬于簡單題.15、1【解析】
由題得函數(shù)的周期為解之即得解.【詳解】由題得函數(shù)的周期為.故答案為1【點(diǎn)睛】本題主要考查三角函數(shù)的圖像和性質(zhì),考查三角函數(shù)的周期,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.16、②③【解析】
根據(jù),分當(dāng)和兩種情況分類討論,每一類中利用正、余弦函數(shù)的單調(diào)性判斷,特別注意,當(dāng)時(shí),.【詳解】當(dāng)時(shí),在上是增函數(shù),因?yàn)椋裕驗(yàn)樵谏鲜菧p函數(shù),且,所以,當(dāng)時(shí),且,因?yàn)樵谏鲜菧p函數(shù),所以,而,所以.故答案為:②③【點(diǎn)睛】本題主要考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性在三角形中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意建立和的方程組,求出這兩個(gè)量,然后利用等比數(shù)列的通項(xiàng)公式可求出;(2)分、、三種情況討論,然后利用等比數(shù)列的求和公式求出和,即可計(jì)算出.【詳解】(1)若,則,得,則,這與矛盾,則,所以,,解得,因此,;(2)當(dāng)時(shí),則,所以,;當(dāng)時(shí),,,則,此時(shí);當(dāng)時(shí),則.因此,.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式的計(jì)算,同時(shí)也考查了與等比數(shù)列前項(xiàng)和相關(guān)的數(shù)列極限的計(jì)算,解題時(shí)要注意對公比的取值進(jìn)行分類討論,考查運(yùn)算求解能力,屬于中等題.18、(Ⅰ)證明見解析;(Ⅱ)【解析】試題分析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點(diǎn)E是PC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點(diǎn)M,則FM⊥平面ABCD,進(jìn)一步利用求得最后利用平行線分線段成比例求出λ的值試題解析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點(diǎn)E是PC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE(Ⅱ)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點(diǎn)O,所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點(diǎn)M,則FM⊥平面ABCD,因?yàn)樗倪呅蜛BCD是矩形,所以BC⊥平面PAB,則△PBC為直角三角形,所以,則直角三角形△ABD的面積為,由FM∥PO得:考點(diǎn):直線與平面平行的判定;棱柱、棱錐、棱臺的體積19、(1)(2)【解析】
(1)先由題意,結(jié)合平面向量基本定理,用表示出,再由向量的數(shù)量積運(yùn)算,即可得出結(jié)果;(2)先由向量數(shù)量積的運(yùn)算,求出,再由,結(jié)合題中條件,即可得出結(jié)果.【詳解】解:(1)為等邊三角形,且,又是中點(diǎn),又(2)由題意:,,,又【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算,熟記平面向量基本定理,以及向量數(shù)量積的運(yùn)算法則即可,屬于??碱}型.20、(1);(2).【解析】
(1)利用正弦定理邊角互化思想以及兩角和的正弦公式可求出的值,結(jié)合角的范圍可得出角的大?。唬?)利用余弦定理得出,由三角形的面積公式,代入數(shù)據(jù)得出,將該等式代入等式可解出邊的長.【詳解】(1)由及正弦定理,可得,即,由可得,所以,因?yàn)?,,所以,,;?)由于,由余弦定理得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房屋買賣合同中的房屋抵押及解押約定3篇
- 二零二五河南事業(yè)單位100人招聘項(xiàng)目合同執(zhí)行標(biāo)準(zhǔn)3篇
- 二零二五版建筑工程項(xiàng)目現(xiàn)場勘察與監(jiān)測服務(wù)合同3篇
- 二零二五版混凝土結(jié)構(gòu)防雷接地施工合同2篇
- 二零二五年度草場承包管理與開發(fā)合同范本3篇
- 二零二五版國際貿(mào)易實(shí)務(wù)實(shí)驗(yàn)報(bào)告與國際貿(mào)易實(shí)務(wù)實(shí)訓(xùn)合同3篇
- 二零二五年度虛擬現(xiàn)實(shí)(VR)技術(shù)研發(fā)合同3篇
- 二零二五年度特種貨物安全運(yùn)輸服務(wù)合同范本2篇
- 二零二五年度體育設(shè)施建設(shè)與運(yùn)營管理復(fù)雜多條款合同3篇
- 二零二五年度電梯門套安裝與安全性能檢測合同3篇
- 建筑工程一切險(xiǎn)條款版
- 人教版八年級下冊第一單元英語Unit1 單元設(shè)計(jì)
- PEP小學(xué)六年級英語上冊選詞填空專題訓(xùn)練
- 古建筑修繕項(xiàng)目施工規(guī)程(試行)
- GA 844-2018防砸透明材料
- 化學(xué)元素周期表記憶與讀音 元素周期表口訣順口溜
- 非人力資源經(jīng)理的人力資源管理培訓(xùn)(新版)課件
- MSDS物質(zhì)安全技術(shù)資料-201膠水
- 鉬氧化物還原過程中的物相轉(zhuǎn)變規(guī)律及其動(dòng)力學(xué)機(jī)理研究
- (完整word)2019注冊消防工程師繼續(xù)教育三科試習(xí)題及答案
- 《調(diào)試件現(xiàn)場管理制度》
評論
0/150
提交評論