新疆庫爾勒市新疆兵團第二師華山中學2024屆數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第1頁
新疆庫爾勒市新疆兵團第二師華山中學2024屆數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第2頁
新疆庫爾勒市新疆兵團第二師華山中學2024屆數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第3頁
新疆庫爾勒市新疆兵團第二師華山中學2024屆數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第4頁
新疆庫爾勒市新疆兵團第二師華山中學2024屆數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆庫爾勒市新疆兵團第二師華山中學2024屆數(shù)學高一下期末教學質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,且,則()A. B. C. D.2.已知一幾何體的三視圖,則它的體積為()A. B. C. D.3.已知圓,直線,點在直線上.若存在圓上的點,使得(為坐標原點),則的取值范圍是A. B. C. D.4.函數(shù)的最大值為A.4 B.5 C.6 D.75.已知,兩條不同直線與的交點在直線上,則的值為()A.2 B.1 C.0 D.-16.已知是第二象限角,()A. B. C. D.7.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或8.已知某數(shù)列的前項和(為非零實數(shù)),則此數(shù)列為()A.等比數(shù)列 B.從第二項起成等比數(shù)列C.當時為等比數(shù)列 D.從第二項起的等比數(shù)列或等差數(shù)列9.《九章算術(shù)》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積為:V=×(底面的圓周長的平方×高).則由此可推得圓周率的取值為()A.3 B.3.14 C.3.2 D.3.310.已知,,且,,則的值為()A. B.1 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.12.已知無窮等比數(shù)列的前項和,其中為常數(shù),則________13.數(shù)列的前項和,則__________.14.已知,若對任意,均有,則的最小值為______;15.已知函數(shù),對于上的任意,,有如下條件:①;②;③;④.其中能使恒成立的條件序號是__________.16.在中,已知,則____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關(guān)于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.18.將正弦曲線如何變換可以得到函數(shù)的圖像,請寫出變換過程,并畫出一個周期的閉區(qū)間的函數(shù)簡圖.19.設(shè)矩形的周長為,把沿向折疊,折過去后交于,設(shè),的面積為.(1)求的解析式及定義域;(2)求的最大值.20.已知為平面內(nèi)不共線的三點,表示的面積(1)若求;(2)若,,,證明:;(3)若,,,其中,且坐標原點恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.21.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國水周”.我國紀念年“世界水日”和“中國水周”活動的宣傳主題為“堅持節(jié)水優(yōu)先,強化水資源管理”.某中學課題小組抽取、兩個小區(qū)各戶家庭,記錄他們月份的用水量(單位:)如下表:小區(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個小區(qū)居民節(jié)水意識更好?(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

直接利用向量平行的充要條件列方程求解即可.【詳解】由可得到.故選A【點睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.2、C【解析】所求體積,故選C.3、B【解析】

根據(jù)條件若存在圓C上的點Q,使得為坐標原點),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點P,圓上有一動點Q,在PQ與圓相切時取得最大值.

如果OP變長,那么可以獲得的最大值將變小.可以得知,當,且PQ與圓相切時,,

而當時,Q在圓上任意移動,存在恒成立.

因此滿足,就能保證一定存在點Q,使得,否則,這樣的點Q是不存在的,

點在直線上,,即

,

,

計算得出,,

的取值范圍是,

故選B.考點:正弦定理、直線與圓的位置關(guān)系.4、B【解析】試題分析:因為,而,所以當時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認為當時,函數(shù)取得最大值.5、C【解析】

聯(lián)立方程求交點,根據(jù)交點在在直線上,得到三角關(guān)系式,化簡得到答案.【詳解】交點在直線上觀察分母和不是恒相等故故答案選C【點睛】本題考查了直線方程,三角函數(shù)運算,意在考查學生的計算能力.6、A【解析】cosα=±=±,又∵α是第二象限角,∴cosα=-.7、B【解析】

根據(jù),在直線異側(cè)或其中一點在直線上列不等式求解即可.【詳解】因為直線與線段相交,所以,,在直線異側(cè)或其中一點在直線上,所以,解得或,故選B.【點睛】本題主要考查點與直線的位置關(guān)系,考查了一元二次不等式的解法,屬于基礎(chǔ)題.8、D【解析】

設(shè)數(shù)列的前項和為,運用數(shù)列的遞推式:當時,,當時,,結(jié)合等差數(shù)列和等比數(shù)列的定義和通項公式,即可得到所求結(jié)論.【詳解】設(shè)數(shù)列的前項和為,對任意的,(為非零實數(shù)).當時,;當時,.若,則,此時,該數(shù)列是從第二項起的等差數(shù)列;若且,不滿足,當時,,此時,該數(shù)列是從第二項起的等比數(shù)列.綜上所述,此數(shù)列為從第二項起的等比數(shù)列或等差數(shù)列.故選:D.【點睛】本題考查數(shù)列的遞推式的運用,等差數(shù)列和等比數(shù)列的定義和通項公式,考查分類討論思想和運算能力,屬于中檔題.9、A【解析】試題分析:由題意知圓柱體積×(底面的圓周長的平方×高),化簡得:,故選A.考點:圓柱的體積公式.10、A【解析】

由已知求出,的值,再由,展開兩角差的余弦求解,即可得答案.【詳解】由,,且,,,,∴,∴,.故選:A.【點睛】本題考查兩角和與差的余弦、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意“拆角配角”思想的運用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

已知求,通常分進行求解即可。【詳解】時,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【點睛】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。12、1【解析】

根據(jù)等比數(shù)列的前項和公式,求得,再結(jié)合極限的運算,即可求解.【詳解】由題意,等比數(shù)列前項和公式,可得,又由,所以,所以,可得.故答案為:.【點睛】本題主要考查了等比數(shù)列的前項和公式的應(yīng)用,以及熟練的極限的計算,其中解答中根據(jù)等比數(shù)列的前項和公式,求得的值,結(jié)合極限的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】

根據(jù)數(shù)列前項和的定義即可得出.【詳解】解:因為所以.故答案為:.【點睛】考查數(shù)列的定義,以及數(shù)列前項和的定義,屬于基礎(chǔ)題.14、【解析】

根據(jù)對任意,均有,分析得到,再根據(jù)正弦型函數(shù)的最值公式求解出的最小值.【詳解】因為對任意,均有,所以,所以,所以,所以.故答案為:.【點睛】本題考查正弦型函數(shù)的應(yīng)用,難度一般.正弦型函數(shù)的最值一定是在對稱軸的位置取到,因此正弦型函數(shù)取最大值與最小值時對應(yīng)的自變量的差的絕對值最小為,此時最大值與最小值對應(yīng)的對稱軸相鄰.15、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函數(shù),∴g(x)圖象關(guān)于y軸對稱,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函數(shù),在[﹣,0)是減函數(shù),故③x1>|x2|;④時,g(x1)>g(x2)恒成立,故答案為:③④.點睛:此題考查的是函數(shù)的單調(diào)性的應(yīng)用;已知表達式,根據(jù)表達式判斷函數(shù)的單調(diào)性,和奇偶性,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反,根據(jù)單調(diào)性的定義可知,增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越大函數(shù)值越小。16、84【解析】

根據(jù)余弦定理以及同角公式求得,再根據(jù)面積公式可得答案.【詳解】由余弦定理可得,又,所以,所以.故答案為:84【點睛】本題考查了余弦定理,考查了同角公式,考查了三角形的面積公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)84;(2);(3)【解析】

(1)每個小矩形的面積乘以該組中間值,所得數(shù)據(jù)求和就是平均數(shù);(2)根據(jù)需求量分段表示函數(shù)關(guān)系;(3)根據(jù)(1)利潤T不少于100元時,即,即,求出其頻率,即可估計概率.【詳解】(1)估計食堂面包需求量的平均數(shù)為:(2)解:由題意,當時,利潤,當時,利潤,即T關(guān)于x的函數(shù)解析式(3)解:由題意,設(shè)利潤T不少于100元為事件A,由(1)知,利潤T不少于100元時,即,即,由直方圖可知,當時,所求概率為【點睛】此題考查頻率分布直方圖,根據(jù)頻率分布直方圖求平均數(shù),計算頻率,以及建立函數(shù)模型解決實際問題,綜合性比較強.18、答案見解析【解析】

利用函數(shù)函數(shù)的圖像變換規(guī)律和五點作圖法可解.【詳解】由函數(shù)的圖像上的每一點保持縱坐標不變,橫坐標擴大為原來的2倍,得到函數(shù)的圖像,

再將函數(shù)的圖像向左平移個單位,得到函數(shù)的圖像.

然后再把函數(shù)的圖像上每一個點的橫坐標保持不變,縱坐標擴大為原來的2倍,得到函數(shù)的圖像.作函數(shù)的圖像列表得0100函數(shù)圖像為【點睛】本題考查函數(shù)的圖像變換的過程敘述和作出函數(shù)的一個周期的簡圖,屬于基礎(chǔ)題.19、(1)(2)的最大值為.【解析】

(1)利用周長,可以求出的長,利用平面幾何的知識可得,再利用勾股定理,可以求出的值,由矩形的周長為,可求出的取值范圍,最后利用三角形面積公式求出的解析式;(2)化簡(1)的解析式,利用基本不等式,可以求出的最大值.【詳解】(1)如下圖所示:∵設(shè),則,又,即,∴,得,∵,∴,∴的面積.(2)由(1)可得,,當且僅當,即時取等號,∴的最大值為,此時.【點睛】本題考查了求函數(shù)解析式,考查了基本不等式,考查了數(shù)學運算能力.20、(1);(2)詳見解析;(3)是定值,值為,理由見解析.【解析】

(1)已知三點坐標,則可以求出三邊長度及對應(yīng)向量,由向量數(shù)量積公式可以求出夾角余弦值,從而算出正弦值,利用面積公式完成作答;(2)和(1)的方法一樣,唯獨不同在于(1)是具體值,而(2)中是參數(shù),我們可以把參數(shù)當做整體(視為已知)能處理;(3)由恰好為的正心可以獲取,而可以借助(2)的公式直接運用,本題也就完成作答.【詳解】(1)因為,所以,,所以因為,所以,所以(2)因為,所以所以因為所以所以所以;(3)因為為的重心,所以由(1)可知又因為為的重心,所以,平方相加得:,即,所以所以,所以是定值,值為【點睛】已知三角形三點,去探究三角形面積問題,通過向量數(shù)量積為載體,算出相對應(yīng)邊所在向量的模長、夾角余弦值,進一步算出正弦值,從而算出面積,這三問存在層層遞進的過程,從特殊到一般慢慢設(shè)問,非常好的一個探究性習題.21、(1)見解析(2)【解析】

(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結(jié)合莖葉圖中數(shù)據(jù)的分布可比較出兩個小區(qū)居民節(jié)水意識;(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的基本事件數(shù),利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論