2025屆重慶市七校數(shù)學高一下期末考試模擬試題含解析_第1頁
2025屆重慶市七校數(shù)學高一下期末考試模擬試題含解析_第2頁
2025屆重慶市七校數(shù)學高一下期末考試模擬試題含解析_第3頁
2025屆重慶市七校數(shù)學高一下期末考試模擬試題含解析_第4頁
2025屆重慶市七校數(shù)學高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆重慶市七校數(shù)學高一下期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.有一個內(nèi)角為120°的三角形的三邊長分別是m,m+1,m+2,則實數(shù)m的值為()A.1 B. C.2 D.2.用數(shù)學歸納法證明這一不等式時,應(yīng)注意必須為()A. B., C., D.,3.將甲、乙兩個籃球隊5場比賽的得分數(shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結(jié)論正確的是()A.甲隊平均得分高于乙隊的平均得分中乙B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù)C.甲隊得分的方差大于乙隊得分的方差D.甲乙兩隊得分的極差相等4.不等式的解集是A. B.C.或 D.5.若,,則的值是()A. B. C. D.6.已知,則的垂直平分線所在直線方程為()A. B.C. D.7.在各項均為正數(shù)的等比數(shù)列中,公比,若,,,數(shù)列的前項和為,則取最大值時,的值為()A. B. C. D.或8.若,,則與的夾角為()A. B. C. D.9.設(shè)集合,則A. B. C. D.10.一個長方體長、寬分別為5,4,且該長方體的外接球的表面積為,則該長方體的表面積為()A.47 B.60 C.94 D.198二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,則________.12.在等比數(shù)列中,,,則______________.13.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.14.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________15.在△中,,,,則_________.16.若,則______,______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點P在線段EF上運動,設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.18.如圖所示,在直角坐標系中,點,,點P,Q在單位圓上,以x軸正半軸為始邊,以射線為終邊的角為,以射線為終邊的角為,滿足.(1)若,求(2)當點P在單位圓上運動時,求函數(shù)的解析式,并求的最大值.19.已知四棱錐的底面為直角梯形,,,底面,且,是的中點.(1)求證:直線平面;(2)若,求二面角的正弦值.20.已知數(shù)列滿足關(guān)系式,.(1)用表示,,;(2)根據(jù)上面的結(jié)果猜想用和表示的表達式,并用數(shù)學歸納法證之.21.設(shè)數(shù)列的前n項和為,已知.(Ⅰ)求通項;(Ⅱ)設(shè),求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由已知利用余弦定理可得,解方程可得的值.【詳解】在三角形中,由余弦定理得:,化簡可得:,解得或(舍).故選:B.【點睛】本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.2、D【解析】

根據(jù)題意驗證,,時,不等式不成立,當時,不等式成立,即可得出答案.【詳解】解:當,,時,顯然不等式不成立,當時,不等式成立,故用數(shù)學歸納法證明這一不等式時,應(yīng)注意必須為,故選:.【點睛】本題考查數(shù)學歸納法的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】

由莖葉圖分別計算甲、乙的平均數(shù),中位數(shù),方差及極差可得答案.【詳解】29;30,∴∴A錯誤;甲的中位數(shù)是29,乙的中位數(shù)是30,29<30,∴B錯誤;甲的極差為31﹣26=5,乙的極差為32﹣28=4,5∴D錯誤;排除可得C選項正確,故選C.【點睛】本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù),極差,中位數(shù),運用了選擇題的做法即排除法的解題技巧,屬于基礎(chǔ)題.4、B【解析】試題分析:∵,∴,即,∴不等式的解集為.考點:分式不等式轉(zhuǎn)化為一元二次不等式.5、B【解析】,,,故選B.6、A【解析】

首先根據(jù)題中所給的兩個點的坐標,應(yīng)用中點坐標公式求得線段的中點坐標,利用兩點斜率坐標公式求得,利用兩直線垂直時斜率的關(guān)系,求得其垂直平分線的斜率,利用點斜式寫出直線的方程,化簡求得結(jié)果.【詳解】因為,所以其中點坐標是,又,所以的垂直平分線所在直線方程為,即,故選A.【點睛】該題考查的是有關(guān)線段的垂直平分線的方程的問題,在解題的過程中,需要明確線段的垂直平分線的關(guān)鍵點一是垂直,二是平分,利用相關(guān)公式求得結(jié)果.7、D【解析】

利用等比數(shù)列的性質(zhì)求出、的值,可求出和的值,利用等比數(shù)列的通項公式可求出,由此得出,并求出數(shù)列的前項和,然后求出,利用二次函數(shù)的性質(zhì)求出當取最大值時對應(yīng)的值.【詳解】由題意可知,由等比數(shù)列的性質(zhì)可得,解得,所以,解得,,,則數(shù)列為等差數(shù)列,,,,因此,當或時,取最大值,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),同時也考查了等差數(shù)列求和以及等差數(shù)列前項和的最值,在求解時將問題轉(zhuǎn)化為二次函數(shù)的最值求解,考查方程與函數(shù)思想的應(yīng)用,屬于中等題.8、A【解析】

根據(jù)平面向量夾角公式可求得,結(jié)合的范圍可求得結(jié)果.【詳解】設(shè)與的夾角為,又故選:【點睛】本題考查平面向量夾角的求解問題,關(guān)鍵是熟練掌握兩向量夾角公式,屬于基礎(chǔ)題.9、B【解析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖進行處理.10、C【解析】

根據(jù)球的表面積公式求得半徑,利用等于體對角線長度的一半可構(gòu)造方程求出長方體的高,進而根據(jù)長方體表面積公式可求得結(jié)果.【詳解】設(shè)長方體高為,外接球半徑為,則,解得:長方體外接球半徑為其體對角線長度的一半解得:長方體表面積本題正確選項:【點睛】本題考查與外接球有關(guān)的長方體的表面積的求解問題,關(guān)鍵是能夠明確長方體的外接球半徑為其體對角線長度的一半,從而構(gòu)造方程求出所需的棱長.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應(yīng)填:.考點:同角三角函數(shù)的基本關(guān)系和兩角差的三角函數(shù)公式.12、1【解析】

根據(jù)已知兩項求出數(shù)列的公比,然后根據(jù)等比數(shù)列的通項公式進行求解即可.【詳解】∵a1=1,a5=4∴公比∴∴該等比數(shù)列的通項公式a3=11=1故答案為:1.【點睛】本題主要考查了等比數(shù)列的通項公式,一般利用基本量的思想,屬于基礎(chǔ)題.13、.【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.14、1【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結(jié)果.詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7=a1(1-2點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.15、【解析】

利用余弦定理求得的值,進而求得的大小.【詳解】由余弦定理得,由于,故.【點睛】本小題主要考查余弦定理解三角形,考查特殊角的三角函數(shù)值,屬于基礎(chǔ)題.16、【解析】

對極限表達式進行整理,得到,由此作出判斷,即可得出參數(shù)的值.【詳解】因為所以,解得:.故答案為:;【點睛】本題主要考查由極限值求參數(shù)的問題,熟記極限運算法則即可,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)θ最小值為60°【解析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解?!驹斀狻浚?)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).設(shè)n1=(x,y,z)為平面PAB的法向量,由得,取y=1,則n1=(,1,-λ).因為n2=(0,1,0)是平面ADE的一個法向量,所以cosθ===.因為0≤λ≤,所以當λ=時,cosθ有最大值,所以θ的最小值為60°.【點睛】本題考查了線面垂直關(guān)系的判定與證明,以及空間角的求解問題,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴密推理是線面位置關(guān)系判定的關(guān)鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18、(1)(2),最大值.【解析】

(1)由角的定義求出,再由數(shù)量積定義計算;(2)由三角函數(shù)定義寫出坐標,求出的坐標,計算出,利用兩角和的正弦公式可化函數(shù)為一個三角函數(shù)形式,由正弦函數(shù)性質(zhì)可求得最大值.【詳解】(1)由圖可知,,..(2)由題意可知,.因為,,所以.所以,.所以.當()時,取得最大值.【點睛】本題考查任意角的定義,平面向量的數(shù)量積的坐標運算,考查兩角和的正弦公式、誘導(dǎo)公式及正弦函數(shù)的性質(zhì).本題解題關(guān)鍵是掌握三角函數(shù)的定義,表示出坐標.19、(1)證明見解析;(2).【解析】

(1)取中點,連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.【詳解】(1)證明:取中點,連結(jié),,,是的中點,,,,,平面平面,平面,直線平面.(2)解:,,底面,,是的中點,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,設(shè)平面的法向量,,,則,取,得.設(shè)平面的法向量,,,則,取,得.設(shè)二面角的平面角為,則.二面角的余弦值為.【點睛】本題主要考查線面平行的證明,考查二面角的余弦值的求法,考查運算求解能力,屬于中檔題.20、(1),,(2)猜想:,證明見解析【解析】

(1)根據(jù)遞推關(guān)系依次代入求解,(2)根據(jù)規(guī)律猜想,再利用數(shù)學歸納法證明【詳解】解:(1),∴,,;(2)猜想:.證明:當時,結(jié)論顯然成立;假設(shè)時結(jié)論成立,即,則時,,即時結(jié)論成立.綜上,對時結(jié)論成立.【點睛】本題考查歸納猜想與數(shù)學歸納法證明,考查基本分析論證能力,屬基礎(chǔ)題21、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)當時,根據(jù),構(gòu)造,利用,兩式相減得到,然后驗證,得到數(shù)列的通項公式;(Ⅱ)由上一問可知.根據(jù)零點分和討論去絕對值,利用分組轉(zhuǎn)化求數(shù)列的和.試題解析:(Ⅰ)因為,所以當時,,兩式相減得:當時,,因為,得到,解得,,所以數(shù)列是首

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論