版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省濱州市三校聯(lián)考高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角的對邊分別為,若,則的最小值是()A.5 B.8 C.7 D.62.若關(guān)于的方程有且只有兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B. C. D.3.在邊長為1的等邊三角形ABC中,D是AB的中點,E為線段AC上一動點,則的取值范圍為()A. B. C. D.4.已知的內(nèi)角、、的對邊分別為、、,邊上的高為,且,則的最大值是()A. B. C. D.5.如圖所示是正方體的平面展開圖,在這個正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°6.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.7.若某扇形的弧長為,圓心角為,則該扇形的半徑是()A. B. C. D.8.計算的值為()A. B. C. D.9.已知等差數(shù)列的首項,公差,則()A.5 B.7 C.9 D.1110.過點P(0,2)作直線x+my﹣4=0的垂線,垂足為Q,則Q到直線x+2y﹣14=0的距離最小值為()A.0 B.2 C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.若是方程的解,其中,則______.12.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.13.若函數(shù)的圖象過點,則___________.14.在中,已知M是AB邊所在直線上一點,滿足,則________.15.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.16.若、分別是方程的兩個根,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知正項數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.(1)求數(shù)列的通項公式;(2)若數(shù)列,求數(shù)列的前項和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實數(shù)的取值范圍.18.已知點,求的邊上的中線所在的直線方程.19.已知直線的方程為.(1)求直線所過定點的坐標(biāo);(2)當(dāng)時,求點關(guān)于直線的對稱點的坐標(biāo);(3)為使直線不過第四象限,求實數(shù)的取值范圍.20.甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機抽取8次,記錄如下:(Ⅰ)分別估計甲、乙兩名同學(xué)在培訓(xùn)期間所有測試成績的平均分;(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位同學(xué)參加較為合適?說明理由.21.如圖,在中,,四邊形是邊長為的正方形,平面平面,若,分別是的中點.(1)求證:平面;(2)求證:平面平面;(3)求幾何體的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先化簡條件中的等式,利用余弦定理整理得到等式,然后根據(jù)等式利用基本不等式求解最小值.【詳解】由,得,化簡整理得,,即,當(dāng)且僅當(dāng),即時,取等號.故選D.【點睛】本題考查正、余弦定理在邊角化簡中的應(yīng)用,難度一般.對于利用基本不等求最值的時候,一定要注意取到等號的條件.2、B【解析】
方程化為,可轉(zhuǎn)化為半圓與直線有兩個不同交點,作圖后易得.【詳解】由得由題意半圓與直線有兩個不同交點,直線過定點,作出半圓與直線,如圖,當(dāng)直線過時,,,當(dāng)直線與半圓相切(位置)時,由,解得.所以的取值范圍是.故選:B.【點睛】本題考查方程根的個數(shù)問題,把問題轉(zhuǎn)化為直線與半圓有兩個交點后利用數(shù)形結(jié)合思想可以方便求解.3、B【解析】
由題意,以點為坐標(biāo)原點,方向為軸正方向,方向為軸正方向,建立平面直角坐標(biāo)系,得到,,以及直線的方程,設(shè)出點E坐標(biāo),根據(jù)向量數(shù)量積,直接計算,即可得出結(jié)果.【詳解】如圖,以點為坐標(biāo)原點,方向為軸正方向,方向為軸正方向,建立平面直角坐標(biāo)系,因為等邊三角形的邊長為1,所以,,,,則直線的方程為,整理得,因為E為線段AC上一動點,設(shè),,則,,所以,因為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,最大值為.即的取值范圍為.故選B【點睛】本題主要考查平面向量的數(shù)量積,利用建立坐標(biāo)系的方法求解即可,屬于??碱}型.4、C【解析】
由余弦定理化簡可得,利用三角形面積公式可得,解得,利用正弦函數(shù)的圖象和性質(zhì)即可得解其最大值.【詳解】由余弦定理可得:,故:,而,故,所以:.故選.【點睛】本題主要考查了余弦定理,三角形面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.5、C【解析】
把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.6、D【解析】由題意,當(dāng)輸入,則;;;,終止循環(huán),則輸出,所以,故選D.7、D【解析】
由扇形的弧長公式列方程得解.【詳解】設(shè)扇形的半徑是,由扇形的弧長公式得:,解得:故選D【點睛】本題主要考查了扇形的弧長公式,考查了方程思想,屬于基礎(chǔ)題.8、D【解析】
直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎(chǔ)題.9、C【解析】
直接利用等差數(shù)列的通項公式,即可得到本題答案.【詳解】由為等差數(shù)列,且首項,公差,得.故選:C【點睛】本題主要考查利用等差數(shù)列的通項公式求值,屬基礎(chǔ)題.10、C【解析】
由直線過定點,得到的中點,由垂直直線,得到點在以點為圓心,以為半徑的圓,求得圓的方程,由此求出到直線的距離最小值,得到答案.【詳解】由題意,過點作直線的垂線,垂足為,直線過定點,由中點公式可得,的中點,由垂直直線,所以點點在以點為圓心,以為半徑的圓,其圓的方程為,則圓心到直線的距離為所以點到直線的距離最小值;,故選:C.【點睛】本題主要考查了圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系的應(yīng)用,同時涉及到點到直線的距離公式的應(yīng)用,著重考查了推理與計算能力,以及分析問題和解答問題的能力,試題綜合性強,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把代入方程2cos(x+α)=1,化簡根據(jù)α∈(0,2π),確定函數(shù)值的范圍,求出α即可.【詳解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案為【點睛】本題考查三角函數(shù)值的符號,三角函數(shù)的定義域,考查邏輯思維能力,屬于基礎(chǔ)題.12、【解析】
過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),設(shè)正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),則為側(cè)面與底面所成角的平面角,即,設(shè)正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【點睛】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.13、【解析】
由過點,求得a,代入,令,即可得到本題答案【詳解】因為的圖象過點,所以,所以,故.故答案為:-5【點睛】本題主要考查函數(shù)的解析式及利用解析式求值.14、3【解析】
由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【詳解】因為M在直線AB上,所以可設(shè),
可得,即,又,則由與不共線,所以,解得.故答案為:3【點睛】本題考查向量的減法和向量共線的利用,屬于基礎(chǔ)題.15、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結(jié),則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.16、【解析】
利用韋達(dá)定理可求出和的值,然后利用兩角和的正切公式可計算出的值.【詳解】由韋達(dá)定理得,,因此,.故答案為:.【點睛】本題考查利用兩角和的正切公式求值,同時也考查了一元二次方程根與系數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】
(1)將點代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求出數(shù)列的前項和;(3)利用分組求和法與裂項法求出數(shù)列的前項和,由題意得出,判斷出數(shù)列各項的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實數(shù)的取值范圍.【詳解】(1)將點代入函數(shù)的解析式得到.當(dāng)時,,即,解得;當(dāng)時,由得,上述兩式相減得,得,即.所以,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,;(2),,因此,①,②由①②得,所以;(3).令為的前項和,則.因為,,,,當(dāng)時,,令,,令,則,當(dāng)時,,此時,數(shù)列為單調(diào)遞減數(shù)列,,則,即,那么當(dāng)時,數(shù)列為單調(diào)遞減數(shù)列,此時,則.因此,數(shù)列的最大值為.又,函數(shù)單調(diào)遞增,此時,函數(shù)的最大值為.因為對任意的,存在,.所以,解得,因此,實數(shù)的取值范圍是.【點睛】本題考查利用等比數(shù)列前項和求數(shù)列通項,同時也考查了錯位相減法求和以及數(shù)列不等式恒成立問題,解題時要充分利用數(shù)列的單調(diào)性求出數(shù)列的最大項或最小項的值,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于難題.18、【解析】
設(shè)邊的中點,則由中點公式可得:,即點坐標(biāo)為所以邊上的中線先的斜率則由直線的斜截式方程可得:這就是所求的邊上的中線所在的直線方程.19、(1);(2);(3)【解析】
(1)把直線化簡為,所以直線過定點(1,1);(2)設(shè)B點坐標(biāo)為,利用軸對稱的性質(zhì)列方程可以解得;(3)把直線化簡為,由直線不過第四象限,得,解出即可.【詳解】(1)直線的方程化簡為,點滿足方程,故直線所過定點的坐標(biāo)為.(2)當(dāng)時,直線的方程為,設(shè)點的坐標(biāo)為,列方程組解得:,,故點關(guān)于直線的對稱點的坐標(biāo)為,(3)把直線方程化簡為,由直線不過第四象限,得,解得,即的取值范圍是.【點睛】本題考查直線方程過定點,以及點關(guān)于直線對稱的問題,直線斜截式方程的應(yīng)用,屬于基礎(chǔ)題.20、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】
(Ⅰ)由莖葉圖中的數(shù)據(jù)計算、,進(jìn)而可得平均分的估計值;(Ⅱ)求出基本事件數(shù),計算所求的概率值;(Ⅲ)答案不唯一.從平均數(shù)與方差考慮,派甲參賽比較合適;從成績優(yōu)秀情況分析,派乙參賽比較合適.【詳解】(Ⅰ)由莖葉圖中的數(shù)據(jù),計算,,由樣本估計總體得,甲、乙兩名同學(xué)在培訓(xùn)期間所有測試成績的平均分分別均約為分.(Ⅱ)從甲、乙兩名同學(xué)高于分的成績中各選一個成績,基本事件是,甲、乙兩名同學(xué)成績都在分以上的基本事件為,故所求的概率為.(Ⅲ)答案不唯一.派甲參賽比較合適,理由如下:由(Ⅰ)知,,,,因為,,所有甲的成績較穩(wěn)定,派甲參賽比較合適;派乙參賽比較合適,理由如下:從統(tǒng)計的角度看,甲獲得分以上(含分)的頻率為,乙獲得分以上(含分)的頻率為,因為,所有派乙參賽比較合適.【點睛】本題考查了利用莖葉圖計算平均數(shù)與方差的應(yīng)用問題,屬于基礎(chǔ)題.21、(1)詳見解析(2)詳見解析(2)【解析】
試題分析:(1)如圖,連接EA交BD于F,利用正方形的性質(zhì)、三角形的中位線定理、線面平行的判定定理即可證明.(2)利用已知可得:FG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同的房產(chǎn)交易合同范本3篇
- 教育培訓(xùn)行業(yè)聘用合同模板3篇
- 教育培訓(xùn)機構(gòu)市場專員合同3篇
- 工程工人的勞動合同范本3篇
- 房屋買賣合同翻譯示例3篇
- 文化館工程項目建議3篇
- 排隊叫號系統(tǒng)招標(biāo)文件詳解與解析指南3篇
- 方式安全承諾書樣本3篇
- 攪拌站施工合同維護(hù)與保修3篇
- 政務(wù)信息化公告3篇
- 儀式外包合同范例
- 2025年上半年中科院大連化學(xué)物理研究所金催化研究中心(2302組)招聘1人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024-2025學(xué)年上學(xué)期深圳初中地理七年級期末模擬卷1
- 黃土高原課件
- 2025年中國科學(xué)技術(shù)大學(xué)自主招生個人陳述自薦信范文
- 2024-2030年中國抗菌肽行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 學(xué)校2025元旦假期安全教育宣傳課件
- 氣球活動布置合同范例
- 注塑部品質(zhì)年終總結(jié)
- 醫(yī)學(xué)綜合英語學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024-2030年中國皮帶機托輥行業(yè)發(fā)展趨勢投資策略分析報告
評論
0/150
提交評論