




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省長春市綜合實驗中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形2.在中,已知,且滿足,則的面積為()A.1 B.2 C. D.3.若,,與的夾角為,則的值是()A. B. C. D.4.已知等比數(shù)列{an}中,a3?a13=20,a6=4,則a10的值是()A.16 B.14 C.6 D.55.總體由編號為01,02,…,60的60個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第8列和第9列數(shù)字開始由左至右選取兩個數(shù)字,則選出的第5個個體的編號為()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.146.一個長方體長、寬分別為5,4,且該長方體的外接球的表面積為,則該長方體的表面積為()A.47 B.60 C.94 D.1987.已知如圖正方體中,為棱上異于其中點的動點,為棱的中點,設(shè)直線為平面與平面的交線,以下關(guān)系中正確的是()A. B.C.平面 D.平面8.下列向量組中,能作為表示它們所在平面內(nèi)的所有向量的基底的是()A., B.,C., D.,9.以橢圓的兩個焦點為直徑的端點的圓與橢圓交于四個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為()A. B. C. D.10.已知二次函數(shù),當(dāng)時,其拋物線在軸上截得線段長依次為,則的值是A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知,,,則角__________.12.在平面直角坐標系中,點,,若直線上存在點使得,則實數(shù)的取值范圍是_____.13.在區(qū)間上,與角終邊相同的角為__________.14.已知,則的最小值是_______.15.函數(shù)的值域為__________.16.過點作圓的兩條切線,切點分別為,則=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為12,過F1的直線l(1)求橢圓C的方程;(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.18.已知函數(shù)的定義域為R(1)求的取值范圍;(2)若函數(shù)的最小值為,解關(guān)于的不等式。19.正四棱錐S-ABCD的底面邊長為2,側(cè)棱長為x.(1)求出其表面積S(x)和體積V(x);(2)設(shè),求出函數(shù)的定義域,并判斷其單調(diào)性(無需證明).20.智能手機的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學(xué)習(xí)時間.某市教育機構(gòu)從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是:,.(1)根據(jù)頻率分布直方圖,估計這名手機使用者中使用時間的中位數(shù)是多少分鐘?(精確到整數(shù))(2)估計手機使用者平均每天使用手機多少分鐘?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)(3)在抽取的名手機使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?21.如圖為某區(qū)域部分交通線路圖,其中直線,直線l與、、都垂直,垂足分別是點A、點B和點C(高速線右側(cè)邊緣),直線與、與的距離分別為1米、2千米,點M和點N分別在直線和上,滿足,記.(1)若,求AM的長度;(2)記的面積為,求的表達式,并問為何值時,有最小值,并求出最小值;(3)求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計算能力,熟練掌握余弦定理是解答本題的關(guān)鍵.2、D【解析】
根據(jù)正弦定理先進行化簡,然后根據(jù)余弦定理求出C的大小,結(jié)合三角形的面積公式進行計算即可.【詳解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面積.故選D.【點睛】本題主要考查三角形面積的計算,結(jié)合正弦定理余弦定理進行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.4、D【解析】
用等比數(shù)列的性質(zhì)求解.【詳解】∵是等比數(shù)列,∴,∴.故選D.【點睛】本題考查等比數(shù)列的性質(zhì),靈活運用等比數(shù)列的性質(zhì)可以很快速地求解等比數(shù)列的問題.在等比數(shù)列中,正整數(shù)滿足,則,特別地若,則.5、C【解析】
通過隨機數(shù)表的相關(guān)運算即可得到答案.【詳解】隨機數(shù)表第1行的第8列和第9列數(shù)字為42,由左至右選取兩個數(shù)字依次為42,36,03,14,22,選出的第5個個體的編號為22,故選C.【點睛】本題主要考查隨機數(shù)法,按照規(guī)則進行即可,難度較小.6、C【解析】
根據(jù)球的表面積公式求得半徑,利用等于體對角線長度的一半可構(gòu)造方程求出長方體的高,進而根據(jù)長方體表面積公式可求得結(jié)果.【詳解】設(shè)長方體高為,外接球半徑為,則,解得:長方體外接球半徑為其體對角線長度的一半解得:長方體表面積本題正確選項:【點睛】本題考查與外接球有關(guān)的長方體的表面積的求解問題,關(guān)鍵是能夠明確長方體的外接球半徑為其體對角線長度的一半,從而構(gòu)造方程求出所需的棱長.7、C【解析】
根據(jù)正方體性質(zhì),以及線面平行、垂直的判定以及性質(zhì)定理即可判斷.【詳解】因為在正方體中,,且平面,平面,所以平面,因為平面,且平面平面,所以有,而,則與不平行,故選項不正確;若,則,顯然與不垂直,矛盾,故選項不正確;若平面,則平面,顯然與正方體的性質(zhì)矛盾,故不正確;而因為平面,平面,所以有平面,所以選項C正確,.【點睛】本題考查了線線、線面平行與垂直的關(guān)系判斷,屬于中檔題.8、B【解析】
以作為基底的向量需要是不共線的向量,可以從向量的坐標發(fā)現(xiàn),,選項中的兩個向量均共線,得到正確結(jié)果是.【詳解】解:可以作為基底的向量需要是不共線的向量,中一個向量是零向量,兩個向量共線,不合要求中兩個向量是,,則故與不共線,故正確;中兩個向量是,兩個向量共線,項中的兩個向量是,兩個向量共線,故選:.【點睛】本題考查平面中兩向量的關(guān)系,屬于基礎(chǔ)題.9、D【解析】
四個交點中的任何一個到焦點的距離和都是,然后分析正六邊形中的長度和焦距的關(guān)系,從而建立等式求解.【詳解】設(shè)橢圓的焦點是,圓與橢圓的四個交點是,設(shè),,,,.故選D.【點睛】本題考查了橢圓的定義和橢圓的性質(zhì),屬于基礎(chǔ)題型10、A【解析】
當(dāng)時,,運用韋達定理得,運用裂項相消求和可得由此能求出【詳解】當(dāng)時,,由,可得,,由,.故選:A.【點睛】本題主要考查了函數(shù)的極限的運算,裂項相消求和,根與系數(shù)的關(guān)系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【詳解】根據(jù)三角形正弦定理得到:,故得到或,因為故得到故答案為.【點睛】在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.12、.【解析】
設(shè)由,求出點軌跡方程,可判斷其軌跡為圓,點又在直線,轉(zhuǎn)化為直線與圓有公共點,只需圓心到直線的距離小于半徑,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】設(shè),,,,整理得,又點在直線,直線與圓共公共點,圓心到直線的距離,即.故答案為:.【點睛】本題考查求曲線的軌跡方程,考查直線與圓的位置關(guān)系,屬于中檔題.13、【解析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學(xué)運算能力,是簡單題.14、3【解析】
根據(jù),將所求等式化為,由基本不等式,當(dāng)a=b時取到最小,可得最小值?!驹斀狻恳驗?,所以,所以(當(dāng)且僅當(dāng)時,等號成立).【點睛】本題考查基本不等式,解題關(guān)鍵是構(gòu)造不等式,并且要注意取最小值時等號能否成立。15、【解析】
本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.16、【解析】
如圖,連接,在直角三角形中,所以,,,故.考點:1.直線與圓的位置關(guān)系;2.平面向量的數(shù)量積.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x2【解析】
(1)根據(jù)三角形周長為1,結(jié)合橢圓的定義可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得橢圓方程;(2)分類討論,當(dāng)直線斜率斜存在時,聯(lián)立y=kx+b【詳解】(1)由題意知,4a=1,則a=2,由橢圓離心率e=ca=∴橢圓C的方程x2(2)由題意,當(dāng)直線AB的斜率不存在,此時可設(shè)A(x3,x3),B(x3,-x3).又A,B兩點在橢圓C上,∴x0∴點O到直線AB的距離d=12當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+b.設(shè)A(x1,y1),B(x2,y2)聯(lián)立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,則x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),滿足△>3.∴點O到直線AB的距離d=b綜上可知:點O到直線AB的距離d=221【點睛】本題主要考查橢圓的定義及橢圓標準方程、圓錐曲線的定值問題以及點到直線的距離公式,屬于難題.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個值與變量無關(guān);②直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.18、(1);(2)【解析】
(1)由的定義域為可知,,恒成立,即可求出的范圍.(2)結(jié)合的范圍,運用配方法,即可求出的值,進而求解不等式.【詳解】(1)由已知可得對,恒成立,當(dāng)時,恒成立。當(dāng)時,則有,解得,綜上可知,的取值范圍是[0,1](2)由(1)可知的取值范圍是[0,1]顯然,當(dāng)時,,不符合.所以,,,由題意得,,,可化為,解得,不等式的解集為?!军c睛】主要考查了一元二次不等式在上恒成立求參數(shù)范圍,配方法以及一元二次不等式求解問題,屬于中檔題.對任意實數(shù)恒成立的條件是;而任意實數(shù)恒成立的條件是.19、(1),;(2)x>,是減函數(shù).【解析】
(1)畫出圖形,分別求出四棱錐的高,及側(cè)面的高的表達式,即可求出表面積與體積的表達式;(2)結(jié)合表達式,可求出的范圍,即定義域,然后判斷其為減函數(shù).【詳解】(1)過點作平面的垂線,垂足為,取的中點,連結(jié),因為為正四棱錐,所以,,,,所以四棱錐的表面積為,體積.(2),解得,是減函數(shù).【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,考查了表面積與體積的計算,考查了學(xué)生的空間想象能力與計算能力,屬于中檔題.20、(1)分鐘.(2)58分鐘;(3)【解析】
(1)根據(jù)中位數(shù)將頻率二等分可直接求得結(jié)果;(2)每組數(shù)據(jù)中間值與對應(yīng)小矩形的面積乘積的總和即為平均數(shù);(3)采用列舉法分別列出所有基本事件和符合題意的基本事件,根據(jù)古典概型概率公式求得結(jié)果.【詳解】(1)設(shè)中位數(shù)為,則解得:(分鐘)這名手機使用者中使用時間的中位數(shù)是分鐘(2)平均每天使用手機時間為:(分鐘)即手機使用者平均每天使用手機時間為分鐘(3)設(shè)在內(nèi)抽取的兩人分別為,在內(nèi)抽取的三人分別為,則從五人中選出兩人共有以下種情況:兩名組長分別選自和的共有以下種情況:所求概率【點睛】本題考查根據(jù)頻率分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公立學(xué)校教師與學(xué)校勞動合同
- 與讀書有關(guān)的課件模板
- 肇慶市實驗中學(xué)高三生物三四五高效課堂教學(xué)設(shè)計:異常遺傳專題
- 江西省南昌市進賢二中2025年高三生物試題(下)期中試卷含解析
- 江西省南昌市10所省重點2025屆高三復(fù)習(xí)統(tǒng)一檢測試題生物試題含解析
- 新疆烏魯木齊市達標名校2024-2025學(xué)年初三下學(xué)期寒假開學(xué)考試語文試題含解析
- 新疆烏魯木齊市沙依巴克區(qū)2025屆三下數(shù)學(xué)期末檢測試題含解析
- 上海應(yīng)用技術(shù)大學(xué)《電路理論實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西司法警官職業(yè)學(xué)院《中學(xué)歷史名師教學(xué)賞析》2023-2024學(xué)年第二學(xué)期期末試卷
- 技術(shù)開發(fā)與合作合同
- 2025年化學(xué)檢驗工職業(yè)技能競賽參考試題庫(共500題)
- 農(nóng)村合作社農(nóng)業(yè)產(chǎn)品供應(yīng)合同
- 中國鍍錫銅絲行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告(2024-2030)
- GB/T 320-2025工業(yè)用合成鹽酸
- 安裝工程類別劃分標準及有關(guān)規(guī)定31183
- 【道法】做核心思想理念的傳承者(教案)-2024-2025學(xué)七年級道德與法治下冊(統(tǒng)編版)
- 2025-2030中國復(fù)合材料行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展趨勢與投資風(fēng)險研究報告
- 2025年濮陽職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫及答案1套
- 血站新進員工培訓(xùn)
- 牧原股份養(yǎng)殖場臭氣治理技術(shù)的創(chuàng)新應(yīng)用
- 2025年社工招聘考試試題及答案
評論
0/150
提交評論