版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市重點(diǎn)中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列互斥但不對立的兩個事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”2.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.3.如圖,在正四棱錐中,,側(cè)面積為,則它的體積為()A.4 B.8 C. D.4.已知,且,,則()A. B. C. D.5.若數(shù)列滿足,,則()A. B. C.18 D.206.設(shè)為等比數(shù)列的前n項(xiàng)和,若,,成等差數(shù)列,則()A.,,成等差數(shù)列 B.,,成等比數(shù)列C.,,成等差數(shù)列 D.,,成等比數(shù)列7.若是等差數(shù)列,首項(xiàng),,,則使前n項(xiàng)和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.40348.已知等差數(shù)列中,則()A.10 B.16 C.20 D.249.的值等于()A. B. C. D.10.化簡=()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則與的夾角等于___________.12.某學(xué)校高一年級舉行選課培訓(xùn)活動,共有1024名學(xué)生、家長、老師參加,其中家長256人.學(xué)校按學(xué)生、家長、老師分層抽樣,從中抽取64人,進(jìn)行某問卷調(diào)查,則抽到的家長有___人13.已知,均為銳角,,,則______.14.若直線與直線互相平行,那么a的值等于_____.15.已知函數(shù),若,則__________.16.執(zhí)行右邊的程序框圖,若輸入的是,則輸出的值是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,.(1)若,求的值;(2)設(shè),若恒成立,求的取值范圍.18.在平面直角坐標(biāo)系中,已知曲線的方程是(,).(1)當(dāng),時,求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.19.某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案(1)的概率;20.在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.(1)設(shè)總造價(元)表示為長度的函數(shù);(2)當(dāng)取何值時,總造價最低,并求出最低總造價.21.設(shè)數(shù)列滿足(,),且,.(1)求和的值;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
從3名男生和2名女生中任選2名學(xué)生的所有結(jié)果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項(xiàng)A中的兩個事件為對立事件,故不正確;選項(xiàng)B中的兩個事件不是互斥事件,故不正確;選項(xiàng)C中的兩個事件不是互斥事件,故不正確;選項(xiàng)D中的兩個事件為互斥但不對立事件,故正確.選D.2、B【解析】
根據(jù)正弦定理,可得,進(jìn)而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點(diǎn)睛】本題主要考查余弦定理及正弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).3、A【解析】
連交于,連,根據(jù)正四棱錐的定義可得平面,取中點(diǎn),連,則由側(cè)面積和底面邊長,求出側(cè)面等腰三角形的高,在中,求出,即可求解.【詳解】連交于,連,取中點(diǎn),連因?yàn)檎睦忮F,則平面,,側(cè)面積,在中,,.故選:A.【點(diǎn)睛】本題考查正四棱錐結(jié)構(gòu)特征、體積和表面積,屬于基礎(chǔ)題.4、C【解析】
根據(jù)同角三角函數(shù)的基本關(guān)系及兩角和差的正弦公式計(jì)算可得.【詳解】解:因?yàn)?,.因?yàn)?,所以.因?yàn)椋?,所以.所以.故選:【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系,兩角和差的正弦公式,屬于中檔題.5、A【解析】
首先根據(jù)題意得到:是以首項(xiàng)為,公差為的等差數(shù)列.再計(jì)算即可.【詳解】因?yàn)?,所以是以首?xiàng)為,公差為的等差數(shù)列.,.故選:A【點(diǎn)睛】本題主要考查等差數(shù)列的定義,熟練掌握等差數(shù)列的表達(dá)式是解題的關(guān)鍵,屬于簡單題.6、A【解析】
先說明不符合題意,由時,成等差數(shù)列,算得,然后用表示出來,即可得到本題答案.【詳解】設(shè)等比數(shù)列的公比為q,首項(xiàng)為,當(dāng)時,有,不滿足成等差數(shù)列;當(dāng)時,因?yàn)槌傻炔顢?shù)列,所以,即,化簡得,解得,所以,,,則成等差數(shù)列.故選:A【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,計(jì)算出等比數(shù)列的公比是關(guān)鍵,考查計(jì)算能力,屬于中等題.7、D【解析】
由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項(xiàng)和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項(xiàng),,則,,則,,即使前n項(xiàng)和成立的最大正整數(shù),故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),重點(diǎn)考查了等差數(shù)列前項(xiàng)和公式,屬中檔題.8、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.9、A【解析】=,選A.10、D【解析】
根據(jù)向量的加法與減法的運(yùn)算法則,即可求解,得到答案.【詳解】由題意,根據(jù)向量的運(yùn)算法則,可得=++==,故選D.【點(diǎn)睛】本題主要考查了向量的加法與減法的運(yùn)算法則,其中解答中熟記向量的加法與減法的運(yùn)算法則,準(zhǔn)確化簡、運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用再結(jié)合已知條件即可求解【詳解】由,即,故答案為:【點(diǎn)睛】本題考查向量的夾角計(jì)算公式,在考題中應(yīng)用廣泛,屬于中檔題12、16【解析】
利用分層抽樣的性質(zhì),直接計(jì)算,即可求得,得到答案.【詳解】由題意,可知共有1024名學(xué)生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進(jìn)行某問卷調(diào)查,則抽到的家長人數(shù)為人.故答案為16【點(diǎn)睛】本題主要考查了分層抽樣的應(yīng)用,其中解答中熟記分層抽樣的概念和性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】
先求出,,再由,并結(jié)合兩角和與差的正弦公式求解即可.【詳解】由題意,可知,則,又,則,或者,因?yàn)闉殇J角,所以不成立,即成立,所以.故.故答案為:.【點(diǎn)睛】本題考查兩角和與差的正弦公式的應(yīng)用,考查同角三角函數(shù)基本關(guān)系的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于中檔題.14、;【解析】由題意得,驗(yàn)證滿足條件,所以15、【解析】
由三角函數(shù)的輔助角公式化簡,關(guān)鍵需得出輔助角的正切值,再由函數(shù)的最大值求解.【詳解】由三角函數(shù)的輔助公式得(其中),因?yàn)樗裕?,所以,,所以,故填:【點(diǎn)睛】本題考查三角函數(shù)的輔助角公式,屬于基礎(chǔ)題.16、24【解析】
試題分析:根據(jù)框圖的循環(huán)結(jié)構(gòu),依次;;;.跳出循環(huán)輸出.考點(diǎn):算法程序框圖.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由,轉(zhuǎn)化為,利用弦化切的思想得出的值,從而求出的值;(2)由,轉(zhuǎn)化為,然后利用平面向量數(shù)量積的坐標(biāo)運(yùn)算律和輔助角公式與函數(shù)的解析式進(jìn)行化簡,并求出在區(qū)間的最大值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,當(dāng)時,,取得最大值:,又恒成立,即,故.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查三角函數(shù)的最值,在求解含參函數(shù)的不等式恒成立問題,可以利用參變量分離法,轉(zhuǎn)化為函數(shù)的最值來求解,考查轉(zhuǎn)化與化歸數(shù)學(xué)思想,考查計(jì)算能力,屬于中等題.18、(1)4;(2).【解析】
(1)當(dāng),時,曲線的方程是,對絕對值內(nèi)的數(shù)進(jìn)行討論,得到四條直線圍成一個菱形,并求出面積為4;(2)對進(jìn)行討論,化簡曲線方程,并與直線方程聯(lián)立,求出點(diǎn)的坐標(biāo),由得到的關(guān)系,再利用點(diǎn)到直線的距離公式求出,從而求得.【詳解】(1)當(dāng),時,曲線的方程是,當(dāng)時,,當(dāng)時,,當(dāng)時,方程等價于,當(dāng)時,方程等價于,當(dāng)時,方程等價于,當(dāng)時,方程等價于,曲線圍成的區(qū)域?yàn)榱庑?,其面積為;(2)當(dāng),時,有,聯(lián)立直線可得,當(dāng),時,有,聯(lián)立直線可得,由可得,即有,化為,點(diǎn)到直線距離,由題意可得,,,即,可得,,可得當(dāng),即時,點(diǎn)到直線距離取得最小值.【點(diǎn)睛】解析幾何的思想方法是坐標(biāo)法,通過代數(shù)運(yùn)算解決幾何問題,本題對運(yùn)算能力的要求是比較高的.19、(1)0.4(2)【解析】
(1)從頻率分布直方圖中計(jì)算出前四組矩形面積之和,即為所求概率;(2)列舉出全部的基本事件,并確定出基本事件的總數(shù),然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數(shù),最后利用古典概型的概率公式可計(jì)算出結(jié)果。【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于單”依題意,連鎖店的人均日快遞業(yè)務(wù)量不少于單的頻率分別為:因?yàn)樗怨烙?jì)為;(2)設(shè)事件為“從四名騎手中隨機(jī)選取2人,至少有1名騎手選擇方案(1)”從四名新聘騎手中隨機(jī)選取2名騎手,有6種情況,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名騎手選擇方案()的情況為{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以?!军c(diǎn)睛】本題考查頻率分布直方圖以及古典概型概率的計(jì)算,在頻率分布直方圖的問題中要注意:(1)每組矩形的面積等于該組數(shù)據(jù)的頻率;(2)所有矩形的面積之和為。20、(1),(2)當(dāng)時,總造價最低為元【解析】
(1)根據(jù)題意得矩形的長為,則矩形的寬為,中間區(qū)域的長為,寬為列出函數(shù)即可.(2)根據(jù)(1)的結(jié)果利用基本不等式即可.【詳解】(1)由矩形的長為,則矩形的寬為,則中間區(qū)域的長為,寬為,則定義域?yàn)閯t整理得,(2)當(dāng)且僅當(dāng)時取等號,即所以當(dāng)時,總
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木材產(chǎn)業(yè)鏈上下游合作發(fā)展合同4篇
- 2025年寬帶網(wǎng)絡(luò)安全協(xié)約
- 2025年壓瘡預(yù)防護(hù)理服務(wù)合同
- 2025年委托招標(biāo)合同
- 2025年卵巢囊腫手術(shù)協(xié)議
- 2025年度木材加工行業(yè)安全監(jiān)管合作協(xié)議3篇
- 2025年加盟運(yùn)營推廣合作協(xié)議
- 二零二五年度倉儲場地租賃及倉儲物流配送合同3篇
- 2025版戶外廣告資源整合與推廣服務(wù)合同2篇
- 2025年度塔吊司機(jī)應(yīng)急救援預(yù)案編制合同4篇
- 2024年上海核工程研究設(shè)計(jì)院股份有限公司招聘筆試沖刺題(帶答案解析)
- 眼的解剖結(jié)構(gòu)與生理功能課件
- 2024年銀行考試-興業(yè)銀行筆試參考題庫含答案
- 泵站運(yùn)行管理現(xiàn)狀改善措施
- 2024屆武漢市部分學(xué)校中考一模數(shù)學(xué)試題含解析
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術(shù)標(biāo)準(zhǔn)》
- 浙教版七年級下冊科學(xué)全冊課件
- 弧度制及弧度制與角度制的換算
- 瓦楞紙箱計(jì)算公式測量方法
- DB32-T 4004-2021水質(zhì) 17種全氟化合物的測定 高效液相色譜串聯(lián)質(zhì)譜法-(高清現(xiàn)行)
- DB15T 2724-2022 羊糞污收集處理技術(shù)規(guī)范
評論
0/150
提交評論