棗莊市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁
棗莊市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁
棗莊市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁
棗莊市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁
棗莊市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

棗莊市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數(shù)滿足約束條件,則的最大值為()A.9 B.7 C.6 D.32.長方體中,已知,,棱在平面內(nèi),則長方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是()A. B. C. D.3.已知,,且,則在方向上的投影為()A. B. C. D.4.在學(xué)習(xí)等差數(shù)列時,我們由,,,,得到等差數(shù)列的通項公式是,象這樣由特殊到一般的推理方法叫做()A.不完全歸納法 B.?dāng)?shù)學(xué)歸納法 C.綜合法 D.分析法5.已知函數(shù)在區(qū)間上恒成立,則實數(shù)的最小值是()A. B. C. D.6.設(shè)是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,,則B.若,,則C.若,,則是異面直線D.若,,,則7.把函數(shù)的圖象上的所有點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),然后把圖象向左平移個單位,則所得圖形對應(yīng)的函數(shù)解析式為()A. B.C. D.8.已知,且,則()A. B.7 C. D.9.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.10.同時拋擲兩枚骰子,朝上的點數(shù)之和為奇數(shù)的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正實數(shù)滿足,則的最大值為__________.12.函數(shù)的最小正周期為___________.13.cos214.已知三棱錐P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,則三棱錐P-ABC外接球的體積為__.15.一個封閉的正三棱柱容器,該容器內(nèi)裝水恰好為其容積的一半(如圖1,底面處于水平狀態(tài)),將容器放倒(如圖2,一個側(cè)面處于水平狀態(tài)),這時水面與各棱交點分別為E,F(xiàn)、,,則的值是__________.16.382與1337的最大公約數(shù)是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,,點在邊上,且,.(1)求;(2)求的長.18.已知菱形ABCD的邊長為2,M為BD上靠近D的三等分點,且線段.(1)求的值;(2)點P為對角線BD上的任意一點,求的最小值.19.某機構(gòu)通過對某企業(yè)今年的生產(chǎn)經(jīng)營情況的調(diào)查,得到每月利潤(單位:萬元)與相應(yīng)月份數(shù)的部分數(shù)據(jù)如表:14712229244241196(1)根據(jù)如表數(shù)據(jù),請從下列三個函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述與的變化關(guān)系,并說明理由,,,;(2)利用(1)中選擇的函數(shù),估計月利潤最大的是第幾個月,并求出該月的利潤.20.已知圓與圓:關(guān)于直線對稱.(1)求圓的標(biāo)準(zhǔn)方程;(2)已知點,若與直線垂直的直線與圓交于不同兩點、,且是鈍角,求直線在軸上的截距的取值范圍.21.三個內(nèi)角A,B,C對應(yīng)的三條邊長分別是,且滿足.(1)求角的大??;(2)若,,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由約束條件作出可行域如圖,聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時,直線在軸上的截距最大,有最大值為,故選A.【方法點晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.2、A【解析】

本題等價于求過BC直線的平面截長方體的面積的取值范圍?!驹斀狻块L方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍等價于,求過BC直線的平面截長方體的面積的取值范圍。由圖形知,,故選A.【點睛】將問題等價轉(zhuǎn)換為可視的問題。3、C【解析】

通過數(shù)量積計算出夾角,然后可得到投影.【詳解】,,即,,在方向上的投影為,故選C.【點睛】本題主要考查向量的幾何背景,建立數(shù)量積方程是解題的關(guān)鍵,難度不大.4、A【解析】

根據(jù)題干中的推理由特殊到一般的推理屬于歸納推理,但又不是數(shù)學(xué)歸納法,從而可得出結(jié)果.【詳解】本題由前三項的規(guī)律猜想出一般項的特點屬于歸納法,但本題并不是數(shù)學(xué)歸納法,因此,本題中的推理方法是不完全歸納法,故選:A.【點睛】本題考查歸納法的特點,判斷時要區(qū)別數(shù)學(xué)歸納法與不完全歸納法,考查對概念的理解,屬于基礎(chǔ)題.5、D【解析】

直接利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形為正弦型函數(shù),進一步利用恒成立問題的應(yīng)用求出結(jié)果.【詳解】函數(shù),由因為,所以,即,當(dāng)時,函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實數(shù)的最小值是.故選:D【點睛】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時考查了不等式恒成立問題,屬于基出題6、A【解析】

利用線面垂直的判定,線面平行的判定,線線的位置關(guān)系及面面平行的性質(zhì)逐一判斷即可.【詳解】對于A,垂直于同一個平面的兩條直線互相平行,故A正確.對于B,若,,則或,故B錯誤.對于C,若,,則位置關(guān)系為平行或相交或異面,故C錯誤.對于D,若,,,則位置關(guān)系為平行或異面,故D錯誤.故選:A【點睛】本題主要考查了線面垂直的性質(zhì),線面平行的判定和面面平行的性質(zhì),屬于簡單題.7、D【解析】

函數(shù)的圖象上的所有點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),的系數(shù)變?yōu)樵瓉淼?倍,即為2,然后根據(jù)平移求出函數(shù)的解析式.【詳解】函數(shù)的圖象上的所有點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),得到,把圖象向左平移個單位,得到故選:.【點睛】本題考查函數(shù)的圖象變換.準(zhǔn)確理解變換規(guī)則是關(guān)鍵,屬于中檔題.8、D【解析】

由平方關(guān)系求得,再由商數(shù)關(guān)系求得,最后由兩角和的正切公式可計算.【詳解】,,,,.故選:D.【點睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關(guān)系.屬于基礎(chǔ)題.9、A【解析】

先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點睛】本題注意考查正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.10、A【解析】

分別求出基本事件的總數(shù)和點數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計算公式求解.【詳解】同時拋擲兩枚骰子,總共有種情況,朝上的點數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【點睛】本題考查古典概型概率的求法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

可利用基本不等式求的最大值.【詳解】因為都是正數(shù),由基本不等式有,所以即,當(dāng)且僅當(dāng)時等號成立,故的最大值為.【點睛】應(yīng)用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.12、【解析】

先利用二倍角公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期公式可得函數(shù)的最小正周期.【詳解】解:由題意可得:,可得函數(shù)的最小正周期為:,故答案為:.【點睛】本題主要考查二倍角的化簡求值和三角函數(shù)周期性的求法,屬于基礎(chǔ)知識的考查.13、3【解析】由二倍角公式可得:cos214、6【解析】

如圖所示,取PB的中點O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O為外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半徑R=∴V球=43πR3=4π3×(62)3=6點睛:空間幾何體與球接、切問題的求解方法:(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點P,A,B,C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=a,PB=b,PC=c,一般把有關(guān)元素“補形”成為一個球內(nèi)接長方體,利用4R2=a2+b2+c2求解.15、【解析】

設(shè),則,由題意得:,由此能求出的值.【詳解】設(shè),則,由題意得:,解得,.故答案為:.【點睛】本題考查兩線段比值的求法、三棱柱的體積等基礎(chǔ)知識,考查運算求解能力,是中檔題.16、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因為,,所以382與1337的最大公約數(shù)為191,故填:.【點睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)7.【解析】試題分析:(I)在中,利用外角的性質(zhì),得即可計算結(jié)果;(II)由正弦定理,計算得,在中,由余弦定理,即可計算結(jié)果.試題解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考點:正弦定理與余弦定理.18、(1),(2)【解析】

(1)由結(jié)合,可求出,從而得到(2)建立直角坐標(biāo)系,設(shè),可得到,然后利用二次函數(shù)的知識求出最小值【詳解】(1)如圖,四邊形ABCD為菱形,所以所以因為,所以可解得,所以所以是等邊三角形,故(2)以A為原點,所在直線為x軸建立如圖所示坐標(biāo)系:則有,所以線段:設(shè),則有,所以因為,所以當(dāng)時取得最小值【點睛】本題考查平面向量數(shù)量積及其運算,涉及余弦定理,二次函數(shù)等基本知識,屬于中檔題.19、(1),理由見解析;(2)第5個月,利潤最大為245.【解析】

(1)根據(jù)題中數(shù)據(jù),即可直接判斷出結(jié)果;(2)將題中,代入,求出參數(shù),根據(jù)二次函數(shù)的性質(zhì),以及自變量的范圍,即可得出結(jié)果.【詳解】(1)由題目中的數(shù)據(jù)知,描述每月利潤(單位:萬元)與相應(yīng)月份數(shù)的變化關(guān)系函數(shù)不可能是常數(shù)函數(shù),也不是單調(diào)函數(shù);所以,應(yīng)選取二次函數(shù)進行描述;(2)將,代入,解得,,∴,,,,∴,萬元.【點睛】本題主要考查二次函數(shù)的應(yīng)用,熟記二次函數(shù)的性質(zhì)即可,屬于??碱}型.20、(1);(2)【解析】

(1)根據(jù)兩圓對稱,直徑一樣,只需圓心對稱即可得圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=﹣x+m與圓C聯(lián)立方程組,利用韋達定理,設(shè)而不求的思想即可求解b范圍,即截距的取值范圍.【詳解】(1)圓的圓心坐標(biāo)為,半徑為2設(shè)圓的圓心坐標(biāo)為,由題意可知解得:由對稱性質(zhì)可得,圓的半徑為2,所以圓的標(biāo)準(zhǔn)方程為:(2)設(shè)直線的方程為,聯(lián)立得:,設(shè)直線與圓的交點,,由,得,(1)因為為鈍角,所以,且直線不過點即滿

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論