2023-2024學(xué)年江西省臨川實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第1頁(yè)
2023-2024學(xué)年江西省臨川實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第2頁(yè)
2023-2024學(xué)年江西省臨川實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第3頁(yè)
2023-2024學(xué)年江西省臨川實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第4頁(yè)
2023-2024學(xué)年江西省臨川實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年江西省臨川實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.13 B.15 C.40 D.462.已知圓與直線及都相切,圓心在直線上,則圓的方程為()A. B.C. D.3.已知變量與正相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù),,則由該觀測(cè)的數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.4.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度5.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在中,分別是角的對(duì)邊,,則角為()A. B. C. D.或7.設(shè)等差數(shù)列的前項(xiàng)和為,,,則()A. B. C. D.8.已知變量和滿足關(guān)系,變量與正相關(guān).下列結(jié)論中正確的是()A.與負(fù)相關(guān),與負(fù)相關(guān)B.與正相關(guān),與正相關(guān)C.與正相關(guān),與負(fù)相關(guān)D.與負(fù)相關(guān),與正相關(guān)9.設(shè)為數(shù)列的前項(xiàng)和,,則的值為()A. B. C. D.不確定10.已知等差數(shù)列的前n項(xiàng)和為,且,,則()A.11 B.16 C.20 D.28二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期是____.12.展開(kāi)式中,各項(xiàng)系數(shù)之和為,則展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_________.13.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為_(kāi)_______.14.正項(xiàng)等比數(shù)列中,為數(shù)列的前n項(xiàng)和,,則的取值范圍是____________.15.若x、y滿足約束條件,則的最大值為_(kāi)_______.16.竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典著,其中記載有求“囷蓋”的術(shù):“置如其周,令相乘也,又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式為.該結(jié)論實(shí)際上是將圓錐體積公式中的圓周率取近似值得到的.則根據(jù)你所學(xué)知識(shí),該公式中取的近似值為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.正方體的棱長(zhǎng)為點(diǎn)分別是棱的中點(diǎn)(1)證明:四邊形是一個(gè)梯形:(2)求幾何體的表面積和體積18.“我將來(lái)要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬(wàn)的小孩子,附近沒(méi)有一個(gè)大人,我是說(shuō)……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無(wú)垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對(duì)的角為,中邊所對(duì)的角為,經(jīng)測(cè)量已知,.(1)霍爾頓發(fā)現(xiàn)無(wú)論多長(zhǎng),為一個(gè)定值,請(qǐng)你驗(yàn)證霍爾頓的結(jié)論,并求出這個(gè)定值;(2)霍爾頓發(fā)現(xiàn)麥田的生長(zhǎng)于土地面積的平方呈正相關(guān),記與的面積分別為和,為了更好地規(guī)劃麥田,請(qǐng)你幫助霍爾頓求出的最大值.19.已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),若數(shù)列的前項(xiàng)和為,求證:.20.如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)與的面積之和記為.若,求的值;若對(duì)任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.21.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b-c)sinB+(2c-b)sinC..(1)求角A的大?。?2)若sinB+sinC=3,試判斷△ABC的形狀.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

模擬程序運(yùn)行即可.【詳解】程序運(yùn)行循環(huán)時(shí),變量值為,不滿足;,不滿足;,滿足,結(jié)束循環(huán),輸出.故選A.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時(shí)可模擬程序運(yùn)行,觀察變量值的變化,判斷是否符合循環(huán)條件即可.2、B【解析】

由平行線間的距離公式求出圓的直徑,然后設(shè)出圓心,由點(diǎn)到兩條切線的距離都等于半徑,求出,即可求得圓的方程.【詳解】因?yàn)閮蓷l直線與平行,所以它們之間的距離即為圓的直徑,所以,所以.設(shè)圓心坐標(biāo)為,則點(diǎn)到兩條切線的距離都等于半徑,所以,,解得,故圓心為,所以圓的標(biāo)準(zhǔn)方程為.故選:.【點(diǎn)睛】本題主要考查求解圓的方程,同時(shí)又進(jìn)一步考查了直線與圓的位置關(guān)系,圓的切線性質(zhì)等.本題也注重考查審題能力,分析問(wèn)題和解決問(wèn)題的能力.難度較易.3、A【解析】試題分析:因?yàn)榕c正相關(guān),排除選項(xiàng)C、D,又因?yàn)榫€性回歸方程恒過(guò)樣本點(diǎn)的中心,故排除選項(xiàng)B;故選A.考點(diǎn):線性回歸直線.4、C【解析】

利用誘導(dǎo)公式,的圖象變換規(guī)律,得出結(jié)論.【詳解】為了得到函數(shù)的圖象,

只需將函數(shù)圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,

故選C.5、C【解析】

根據(jù),,可判斷所在象限.【詳解】,在三四象限.,在一三象限,故在第三象限答案為C【點(diǎn)睛】本題考查了三角函數(shù)在每個(gè)象限的正負(fù),屬于基礎(chǔ)題型.6、D【解析】

由正弦定理,可得,即可求解的大小,得到答案.【詳解】在中,因?yàn)?,由正弦定理,可得,又由,且,所以或,故選D.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練利用正弦定理,求得的值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、A【解析】

利用等差數(shù)列的基本量解決問(wèn)題.【詳解】解:設(shè)等差數(shù)列的公差為,首項(xiàng)為,因?yàn)?,,故有,解得,,故選A.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與前項(xiàng)和公式,解決問(wèn)題的關(guān)鍵是熟練運(yùn)用基本量法.8、A【解析】

因?yàn)樽兞亢蜐M足關(guān)系,一次項(xiàng)系數(shù)為,所以與負(fù)相關(guān);變量與正相關(guān),設(shè),所以,得到,一次項(xiàng)系數(shù)小于零,所以與負(fù)相關(guān),故選A.9、C【解析】

令,由求出的值,再令時(shí),由得出,兩式相減可推出數(shù)列是等比數(shù)列,求出該數(shù)列的公比,再利用等比數(shù)列求和公式可求出的值.【詳解】當(dāng)時(shí),,得;當(dāng)時(shí),由得出,兩式相減得,可得.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,.故選:C.【點(diǎn)睛】本題考查利用前項(xiàng)和求數(shù)列通項(xiàng),同時(shí)也考查了等比數(shù)列求和,在遞推公式中涉及與時(shí),可利用公式求解出,也可以轉(zhuǎn)化為來(lái)求解,考查推理能力與計(jì)算能力,屬于中等題.10、C【解析】

可利用等差數(shù)列的性質(zhì),,仍然成等差數(shù)列來(lái)解決.【詳解】為等差數(shù)列,前項(xiàng)和為,,,成等差數(shù)列,,又,,,.故選:.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),關(guān)鍵在于掌握“等差數(shù)列中,,仍成等差數(shù)列”這一性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將三角函數(shù)化簡(jiǎn)為標(biāo)準(zhǔn)形式,再利用周期公式得到答案.【詳解】由于所以【點(diǎn)睛】本題考查了三角函數(shù)的化簡(jiǎn),周期公式,屬于簡(jiǎn)單題.12、【解析】令,則,即,因?yàn)榈恼归_(kāi)式的通項(xiàng)為,所以展開(kāi)式中常數(shù)項(xiàng)為,即常數(shù)項(xiàng)為.點(diǎn)睛:本題考查二項(xiàng)式定理;求二項(xiàng)展開(kāi)式的各項(xiàng)系數(shù)的和往往利用賦值法(常賦值為),還要注意整體賦值,且要注意展開(kāi)式各項(xiàng)系數(shù)和二項(xiàng)式系數(shù)的區(qū)別.13、【解析】

圓柱的側(cè)面打開(kāi)是一個(gè)矩形,長(zhǎng)為底面的周長(zhǎng),寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因?yàn)閳A柱的底面圓的半徑為2,所以圓柱的底面圓的周長(zhǎng)為,則該圓柱的側(cè)面積為.【點(diǎn)睛】此題考察圓柱側(cè)面積公式,屬于基礎(chǔ)題目.14、【解析】

利用結(jié)合基本不等式求得的取值范圍【詳解】由題意知,,且,所以,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以.故答案為:【點(diǎn)睛】本題考查等比數(shù)列的前n項(xiàng)和及性質(zhì),利用性質(zhì)結(jié)合基本不等式求最值是關(guān)鍵15、18【解析】

先作出不等式組所表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:作出不等式組所表示的平面區(qū)域,如圖所示,由圖可得:目標(biāo)函數(shù)所在直線過(guò)點(diǎn)時(shí),取最大值,即,故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,重點(diǎn)考查了作圖能力,屬基礎(chǔ)題.16、3【解析】

首先求出圓錐體的體積,然后與近似公式對(duì)比,即可求出公式中取的近似值.【詳解】由題知圓錐體的體積,因?yàn)閳A錐的底面周長(zhǎng)為,所以圓錐的底面面積,所以圓錐體的體積,根據(jù)題意與近似公式對(duì)比發(fā)現(xiàn),公式中取的近似值為.故答案為:.【點(diǎn)睛】本題考查了圓錐體的體積公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)表面積為,體積為【解析】

(1)在正方體中,根據(jù)分別是棱的中點(diǎn),由中位線得到且,又由,根據(jù)公理4平行關(guān)系的傳遞性得證.(2)幾何體的表面積,上下底是直角三角形,三個(gè)側(cè)面,有兩個(gè)是全等的直角梯形,另一個(gè)是等腰梯形求解,體積按照棱臺(tái)體積公式求解.【詳解】(1)如圖所示:在正方體中,因?yàn)榉謩e是棱的中點(diǎn),所以且,又因?yàn)?,所以且,所以四邊形是一個(gè)梯形.(2)幾何體的表面積為:.體積為:.【點(diǎn)睛】本題主要考查幾何體中的截面問(wèn)題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.18、(1);(2).【解析】

(1)在和中分別對(duì)使用余弦定理,可推出與的關(guān)系,即可得出是一個(gè)定值;(2)求出的表達(dá)式,利用二次函數(shù)的基本性質(zhì)以及余弦函數(shù)值的取范圍,可得出的最大值.【詳解】(1)在中,由余弦定理得,在中,由余弦定理得,,則,;(2),,則,由(1)知:,代入上式得:,配方得:,當(dāng)時(shí),取到最大值.【點(diǎn)睛】本題考查余弦定理的應(yīng)用、三角形面積的求法以及二次函數(shù)最值的求解,解題的關(guān)鍵就是利用題中結(jié)論將問(wèn)題轉(zhuǎn)化為二次函數(shù)來(lái)求解,考查運(yùn)算求解能力,屬于中等題.19、(1)(2)見(jiàn)解析【解析】

(1)先利用時(shí),由求出的值,再令,由,得出,將兩式相減得出數(shù)列為等比數(shù)列,得出該數(shù)列的公比,可求出;(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)以及等差數(shù)列的求和公式得出,并將裂項(xiàng)為,利用裂項(xiàng)法求出,于此可證明出所證不等式成立.【詳解】(1)由題可得.當(dāng)時(shí),,即.由題設(shè),,兩式相減得.所以是以2為首項(xiàng),2為公比的等比數(shù)列,故.(2),則,所以因?yàn)?,所以,即證.【點(diǎn)睛】本題考查利用求通項(xiàng),以及裂項(xiàng)法求和,利用求通項(xiàng)的原則是,另外在利用裂項(xiàng)法求和時(shí)要注意裂項(xiàng)法求和法所適用數(shù)列通項(xiàng)的基本類型,熟悉裂項(xiàng)法求和的基本步驟,都是??碱}型,屬于中等題.20、(1)或(2)【解析】

(1)運(yùn)用三角形的面積公式和三角函數(shù)的和差公式,以及特殊角的函數(shù)值,可得所求角;(2)由正弦函數(shù)的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數(shù)列的單調(diào)性,討論的范圍,即可得到的取值范圍.【詳解】依題意,可得,由,得,又,所以.由得因?yàn)椋?,所以,?dāng)時(shí),,(當(dāng)且僅當(dāng)時(shí),等號(hào)成立)又因?yàn)閷?duì)任意,存在,使得成立,所以,即,解得,因?yàn)閿?shù)列為遞增數(shù)列,且,所以,從而,又,所以,從而,又,①當(dāng)時(shí),,從而,此時(shí)與同號(hào),又,即,②當(dāng)時(shí),由于趨向于正無(wú)窮大時(shí),與趨向于相等,從而與趨向于相等,即存在正整數(shù),使,從而,此時(shí)與異號(hào),與數(shù)列為遞增數(shù)列矛盾,綜上,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,三角函數(shù)的恒等變換,以及不等式恒成立,存在性問(wèn)題解法和數(shù)列的單調(diào)性的判斷和運(yùn)用,試題綜合性強(qiáng),屬于難題,著重考查了推理與運(yùn)算能力,以及分析問(wèn)題和解答問(wèn)題的能力.21、(1)60°【解析】

(1)利用余弦定理表示出cosA,然后根據(jù)正弦定理化簡(jiǎn)已知的等式,整理后代入表示出的cosA中,化簡(jiǎn)后求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)由A為60°,利用三角形的內(nèi)角和定理得到B+C的度數(shù),用B表示出C,代入已知的sinB+sinC=3中,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由B的范圍,求出這個(gè)角的范圍,利用特殊角的三角函數(shù)值求出B為60°,可得出三角形ABC三個(gè)角相等,都為60°,則三角形ABC為等邊三角形.【詳解】(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cosA=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論