甘肅肅蘭州市第五十一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
甘肅肅蘭州市第五十一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
甘肅肅蘭州市第五十一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
甘肅肅蘭州市第五十一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
甘肅肅蘭州市第五十一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅肅蘭州市第五十一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.兩個正實數(shù)滿足,則滿足,恒成立的取值范圍()A. B. C. D.2.設(shè)向量,,則向量與的夾角為()A. B. C. D.3.設(shè)甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20分鐘,在乙地休息10分鐘后,他又以勻速從乙地返回到甲地用了30分鐘,則小王從出發(fā)到返回原地所經(jīng)過的路程y和其所用的時間x的函數(shù)圖象為()A. B.C. D.4.直線的傾斜角為()A. B. C. D.5.化簡()A. B. C. D.6.已知,,,則的最小值為()A. B. C.7 D.97.化簡:()A. B. C. D.8.已知各個頂點都在同一球面上的正方體的棱長為2,則這個球的表面積為()A. B. C. D.9.甲、乙兩名選手參加歌手大賽時,5名評委打的分?jǐn)?shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定10.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內(nèi)切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.12.若是等比數(shù)列,,,則________13.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.14.已知關(guān)于實數(shù)x,y的不等式組構(gòu)成的平面區(qū)域為,若,使得恒成立,則實數(shù)m的最小值是______.15.各項均為實數(shù)的等比數(shù)列的前項和為,已知成等差數(shù)列,則數(shù)列的公比為________.16.如果奇函數(shù)f(x)在[3,7]上是增函數(shù)且最小值是5,那么f(x)在[-7,-3]上是_________.①減函數(shù)且最小值是-5;②減函數(shù)且最大值是-5;③增函數(shù)且最小值是-5;④增函數(shù)且最大值是-5三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分?jǐn)?shù)在的概率.18.若數(shù)列滿足:存在正整數(shù),對任意的,使得成立,則稱為階穩(wěn)增數(shù)列.(1)若由正整數(shù)構(gòu)成的數(shù)列為階穩(wěn)增數(shù)列,且對任意,數(shù)列中恰有個,求的值;(2)設(shè)等比數(shù)列為階穩(wěn)增數(shù)列且首項大于,試求該數(shù)列公比的取值范圍;(3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實數(shù)),設(shè)為數(shù)列的前項和.若已知數(shù)列極限存在,試求實數(shù)的取值范圍,并求出該極限值.19.向量函數(shù).(1)求的最小正周期及單調(diào)增區(qū)間;(2)求在區(qū)間上的最大值和最小值及取最值時的值.20.在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓上.(1)求圓的方程;(2)若圓與直線交于,兩點,且,求的值.21.如圖,四面體中,分別是的中點,,.(1)求證:平面;(2)求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由基本不等式和“1”的代換,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范圍?!驹斀狻坑桑?,可得,當(dāng)且僅當(dāng)上式取得等號,若恒成立,則有,解得.故選:B【點睛】本題考查利用基本不等式求恒成立問題中的參數(shù)取值范圍,是??碱}型。2、C【解析】

由條件有,利用公式可求夾角.【詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C3、D【解析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20min,在乙地休息10min后,他又以勻速從乙地返回到甲地用了30min,那么可知先是勻速運動,圖像為直線,然后再休息,路程不變,那么可知時間持續(xù)10min,那么最后還是同樣的勻速運動,直線的斜率不變可知選D.考點:函數(shù)圖像點評:主要是考查了路程與時間的函數(shù)圖像的運用,屬于基礎(chǔ)題.4、C【解析】

先根據(jù)直線方程得斜率,再求傾斜角.【詳解】因為直線,所以直線斜率為,所以傾斜角為,選C.【點睛】本題考查直線斜率以及傾斜角,考查基本分析求解能力,屬基本題.5、A【解析】

減法先變?yōu)榧臃?,利用向量的三角形法則得到答案.【詳解】故答案選A【點睛】本題考查了向量的加減法,屬于簡單題.6、B【解析】

根據(jù)條件可知,,,從而得出,這樣便可得出的最小值.【詳解】;,且,;;,當(dāng)且僅當(dāng)時等號成立;;的最小值為.故選:.【點睛】考查基本不等式在求最值中的應(yīng)用,注意應(yīng)用基本不等式所滿足的條件及等號成立的條件.7、A【解析】

.故選A.【點睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運算.8、A【解析】

先求出外接球的半徑,再求球的表面積得解.【詳解】由題得正方體的對角線長為,所以.故選A【點睛】本題主要考查多面體的外接球問題和球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.9、C【解析】

先求均值,再根據(jù)標(biāo)準(zhǔn)差公式求標(biāo)準(zhǔn)差,最后比較大小.【詳解】乙選手分?jǐn)?shù)的平均數(shù)分別為所以標(biāo)準(zhǔn)差分別為因此s1<s2,選C.【點睛】本題考查標(biāo)準(zhǔn)差,考查基本求解能力.10、C【解析】

根據(jù)條件即可求出,從而可求出,,,然后可設(shè)與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設(shè)與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運用,向量的模的求法,以及利用數(shù)量積求向量夾角.二、填空題:本大題共6小題,每小題5分,共30分。11、825【解析】

以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當(dāng)k>﹣3時,4(k+3)25≥825,當(dāng)且僅當(dāng)4(k+3),即k3時取等號;②當(dāng)k<﹣3時,則4(k+3)23≥823,當(dāng)且僅當(dāng)﹣4(k+3),即k3時取等號.故答案為:825【點睛】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學(xué)生對這些知識的理解掌握水平.12、【解析】

根據(jù)等比數(shù)列的通項公式求解公比再求和即可.【詳解】設(shè)公比為,則.故故答案為:【點睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎(chǔ)題型.13、【解析】

通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【詳解】因為的面積為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【點睛】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯點注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.14、【解析】

由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點與定點距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點睛】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來求解,屬于??碱}型.15、【解析】

根據(jù)成等差數(shù)列得到,計算得到答案.【詳解】成等差數(shù)列,則故答案為:【點睛】本題考查了等差數(shù)列,等比數(shù)列的綜合應(yīng)用,意在考查學(xué)生對于數(shù)列公式的靈活運用.16、④【解析】

由題意結(jié)合奇函數(shù)的對稱性和所給函數(shù)的性質(zhì)即可求得最終結(jié)果.【詳解】奇函數(shù)的函數(shù)圖象關(guān)于坐標(biāo)原點中心對稱,則若奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為1,那么f(x)在區(qū)間[﹣7,﹣3]上是增函數(shù)且最大值為﹣1.故答案為:④.【點睛】本題考查了奇函數(shù)的性質(zhì),函數(shù)的對稱性及其應(yīng)用等,重點考查學(xué)生對基礎(chǔ)概念的理解和計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】

(I)根據(jù)頻率之和為列方程,結(jié)合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點作為中位數(shù).(III)先計算出從,中分別抽取人和人,再利用列舉法和古典概型概率計算公式,計算出所求的概率.【詳解】解:(I)依題意得,所以,又,所以.(Ⅱ)平均數(shù)為中位數(shù)為眾數(shù)為(Ш)依題意,知分?jǐn)?shù)在的市民抽取了2人,記為,分?jǐn)?shù)在的市民抽取了6人,記為1,2,3,4,5,6,所以從這8人中隨機抽取2人所有的情況為:,共28種,其中滿足條件的為,共13種,設(shè)“至少有1人的分?jǐn)?shù)在”的事件為,則【點睛】本小題主要考查求解頻率分布直方圖上的未知數(shù),考查利用頻率分布直方圖估計平均數(shù)、中位數(shù)和眾數(shù)的方法,考查利用古典概型求概率.屬于中檔題.18、(1);(2);(3).【解析】

(1)設(shè),由題意得出,求出正整數(shù)的值即可;(2)根據(jù)定義可知等比數(shù)列中的奇數(shù)項構(gòu)成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構(gòu)成的等比數(shù)列也為階穩(wěn)增數(shù)列,分和兩種情況討論,列出關(guān)于的不等式,解出即可;(3)求出,然后分、和三種情況討論,求出,結(jié)合數(shù)列的極限存在,求出實數(shù)的取值范圍.【詳解】(1)設(shè),由于數(shù)列為階穩(wěn)增數(shù)列,則,對任意,數(shù)列中恰有個,則數(shù)列中的項依次為:、、、、、、、、、、、、、、、、,設(shè)數(shù)列中值為的最大項數(shù)為,則,由題意可得,即,,解得,因此,;(2)由于等比數(shù)列為階穩(wěn)增數(shù)列,即對任意的,,且.所以,等比數(shù)列中的奇數(shù)項構(gòu)成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構(gòu)成的等比數(shù)列也為階穩(wěn)增數(shù)列.①當(dāng)時,則等比數(shù)列中每項都為正數(shù),由可得,整理得,解得;②當(dāng)時,(i)若為正奇數(shù),可設(shè),則,由,得,即,整理得,解得;(ii)若為正偶數(shù)時,可設(shè),則,由,得,即,整理得,解得.所以,當(dāng)時,等比數(shù)列為階穩(wěn)增數(shù)列.綜上所述,實數(shù)的取值范圍是;(3),由(1)知,則.①當(dāng)時,,,則,此時,數(shù)列的極限不存在;②當(dāng)時,,,上式下式得,所以,,則.(i)若時,則,此時數(shù)列的極限不存在;(ii)當(dāng)時,,此時,數(shù)列的極限存在.綜上所述,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列新定義“階穩(wěn)增數(shù)列”的應(yīng)用,涉及等比數(shù)列的單調(diào)性問題、數(shù)列極限的存在性問題,同時也考查了錯位相減法求和,解題的關(guān)鍵就是理解新定義“階穩(wěn)增數(shù)列”,考查分析問題和解決問題能力,考查了分類討論思想的應(yīng)用,屬于難題.19、(1),(2),最大值為;,最小值為0【解析】

(1)用已知的向量表示出,再進行化簡整理,可得;(2)由正弦函數(shù)的值域可得?!驹斀狻浚?)由題得,,化簡整理得,因此的最小正周期為,由得,則單調(diào)增區(qū)間為.(2)若,則,當(dāng),即時,取最大值,當(dāng),即時,取最小值0.綜上,當(dāng)時,取最大值,當(dāng)時,取最小值0.【點睛】本題考查向量的運算和函數(shù)的周期,單調(diào)區(qū)間以及最值,知識點考查全面,難度不大。20、(1);(2).【解析】分析:(1)因為曲線與坐標(biāo)軸的交點都在圓上,所以要求圓的方程應(yīng)求曲線與坐標(biāo)軸的三個交點.曲線與軸的交點為,與軸的交點為.由與軸的交點為關(guān)于點(3,0)對稱,故可設(shè)圓的圓心為,由兩點間距離公式可得,解得.進而可求得圓的半徑為,然后可求圓的方程為.(2)設(shè),,由可得,進而可得,減少變量個數(shù).因為,,所以.要求值,故將直線與圓的方程聯(lián)立可得,消去,得方程.因為直線與圓有兩個交點,故判別式,由根與系數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論