福建省三明市永安三中2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
福建省三明市永安三中2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
福建省三明市永安三中2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
福建省三明市永安三中2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
福建省三明市永安三中2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省三明市永安三中2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某班20名學生的期末考試成績用如圖莖葉圖表示,執(zhí)行如圖程序框圖,若輸入的()分別為這20名學生的考試成績,則輸出的結(jié)果為()A.11 B.10 C.9 D.82.等差數(shù)列{an}的前n項和為Sn,若S9=S4,則S13=()A.13 B.7 C.0 D.13.(2017新課標全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.4.若數(shù)列滿足,,則()A. B. C.18 D.205.已知兩個單位向量的夾角為,則下列結(jié)論不正確的是()A.方向上的投影為 B.C. D.6.同時具有性質(zhì):“①最小正周期是;②圖象關(guān)于直線對稱;③在上是單調(diào)遞增函數(shù)”的一個函數(shù)可以是()A. B.C. D.7.已知函數(shù)的圖象過點,且在上單調(diào),同時的圖象向左平移個單位之后與原來的圖象重合,當,且時,,則A. B. C. D.8.點M(4,m)關(guān)于點N(n,-3)的對稱點為P(6,-9)則()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=59.中,則A. B. C. D.10.等差數(shù)列an的公差d<0,且a12=a212,則數(shù)列aA.9 B.10 C.10和11 D.11和12二、填空題:本大題共6小題,每小題5分,共30分。11.設數(shù)列的前項和,若,,則的通項公式為_____.12.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.13.已知函數(shù),對于下列說法:①要得到的圖象,只需將的圖象向左平移個單位長度即可;②的圖象關(guān)于直線對稱:③在內(nèi)的單調(diào)遞減區(qū)間為;④為奇函數(shù).則上述說法正確的是________(填入所有正確說法的序號).14.在數(shù)列中,,,則________.15.設函數(shù)的最小值為,則的取值范圍是___________.16.若關(guān)于x的不等式的解集是,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在如圖所示的幾何體中,D是AC的中點,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC.18.如圖,在處有一港口,兩艘海輪同時從港口處出發(fā)向正北方向勻速航行,海輪的航行速度為20海里/小時,海輪的航行速度大于海輪.在港口北偏東60°方向上的處有一觀測站,1小時后在處測得與海輪的距離為30海里,且處對兩艘海輪,的視角為30°.(1)求觀測站到港口的距離;(2)求海輪的航行速度.19.內(nèi)角的對邊分別為,已知.(1)求;(2)若,,求的面積.20.要測量底部不能到達的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD="40"m,則電視塔的高度為多少?21.在中,角,,的對邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

首先判斷程序框圖的功能,然后從莖葉圖數(shù)出相應人數(shù),從而得到答案.【詳解】由算法流程圖可知,其統(tǒng)計的是成績大于等于120的人數(shù),所以由莖葉圖知:成績大于等于120的人數(shù)為11,故選A.【點睛】本題主要考查算法框圖的輸出結(jié)果,意在考查學生的分析能力及計算能力,難度不大.2、C【解析】

由題意,利用等差數(shù)列前n項和公式求出a1=﹣6d,由此能求出S13的值.【詳解】∵等差數(shù)列{an}的前n項和為Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故選:C.【點睛】本題考查等差數(shù)列的前n項和公式的應用,考查運算求解能力,是基礎題.3、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.4、A【解析】

首先根據(jù)題意得到:是以首項為,公差為的等差數(shù)列.再計算即可.【詳解】因為,所以是以首項為,公差為的等差數(shù)列.,.故選:A【點睛】本題主要考查等差數(shù)列的定義,熟練掌握等差數(shù)列的表達式是解題的關(guān)鍵,屬于簡單題.5、B【解析】試題分析:A.方向上的投影為,即,所以A正確;B.,所以B錯誤;C.,所以,所以C正確;D.,所以.D正確.考點:向量的數(shù)量積;向量的投影;向量的夾角.點評:熟練掌握數(shù)量積的有關(guān)性質(zhì)是解決此題的關(guān)鍵,尤其要注意“向量的平方就等于其模的平方”這條性質(zhì).6、D【解析】

利用正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),逐一檢驗,可得結(jié)論.【詳解】A,對于y=cos(),它的周期為4π,故不滿足條件.B,對于y=sin(2x),在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上不是單調(diào)遞增函數(shù),故不滿足條件.C,對于y=cos(2x),當x時,函數(shù)y,不是最值,故不滿足②它的圖象關(guān)于直線x對稱,故不滿足條件.D,對于y=sin(2x),它的周期為π,當x時,函數(shù)y=1,是函數(shù)的最大值,滿足它的圖象關(guān)于直線x對稱;且在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),滿足條件.故選:D.【點睛】本題主要考查了正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),屬于中檔題.7、A【解析】由題設可知該函數(shù)的周期是,則過點且可得,故,由可得,所以由可得,注意到,故,所以,應選答案A點睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應的特殊點求.8、D【解析】因為點M,P關(guān)于點N對稱,所以由中點坐標公式可知.9、B【解析】試題分析:由余弦定理,故選擇B考點:余弦定理10、C【解析】

利用等差數(shù)列性質(zhì)得到a11=0,再判斷S10【詳解】等差數(shù)列an的公差d<0,且a根據(jù)正負關(guān)系:S10或S故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),Sn的最大值,將Sn的最大值轉(zhuǎn)化為二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

已知求,通常分進行求解即可?!驹斀狻繒r,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【點睛】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。12、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.13、②④【解析】

結(jié)合三角函數(shù)的圖象與性質(zhì)對四個結(jié)論逐個分析即可得出答案.【詳解】①要得到的圖象,應將的圖象向左平移個單位長度,所以①錯誤;②令,,解得,,所以直線是的一條對稱軸,故②正確;③令,,解得,,因為,所以在定義域內(nèi)的單調(diào)遞減區(qū)間為和,所以③錯誤;④是奇函數(shù),所以該說法正確.【點睛】本題考查了正弦型函數(shù)的對稱軸、單調(diào)性、奇偶性與平移變換,考查了學生對的圖象與性質(zhì)的掌握,屬于中檔題.14、【解析】

由遞推公式可以求出,可以歸納出數(shù)列的周期,從而可得到答案.【詳解】由,,.,可推測數(shù)列是以3為周期的周期數(shù)列.所以。故答案為:【點睛】本題考查數(shù)量的遞推公式同時考查數(shù)列的周期性,屬于中檔題.15、.【解析】

確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,16、-14【解析】

由不等式的解集求出對應方程的實數(shù)根,利用根與系數(shù)的關(guān)系求出的值,從而可得結(jié)果.【詳解】不等式的解集是,所以對應方程的實數(shù)根為和,且,由根與系數(shù)的關(guān)系得,解得,,故答案為.【點睛】本題主要考查一元二次不等式的解集與一元二次不等式的根之間的關(guān)系,以及韋達定理的應用,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明:見解析;(Ⅱ)見解析.【解析】試題分析:(Ⅰ)根據(jù),知與確定一個平面,連接,得到,,從而平面,證得.(Ⅱ)設的中點為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因為為的中點,所以,同理可得.又,所以平面,因為平面,所以.(Ⅱ)設的中點為,連.在中,因為是的中點,所以,又,所以.在中,因為是的中點,所以,又,所以平面平面,因為平面,所以平面.【考點】平行關(guān)系,垂直關(guān)系【名師點睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關(guān)鍵在于能利用已知的直線與直線、直線與平面、平面與平面的位置關(guān)系,通過嚴密推理,給出規(guī)范的證明.本題能較好地考查考生的空間想象能力、邏輯推理能力及轉(zhuǎn)化與化歸思想等.18、(1)海里;(2)速度為海里/小時【解析】

(1)由已知可知,所以在中,運用余弦定理易得OA的長.(2)因為C航行1小時到達C,所以知道OC的長即可,即求BC的長.在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【詳解】(1)因為海倫的速度為20海里/小時,所以1小時后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度為海里/小時【點睛】三角形中一般已知三個條件可求其他條件,用到的工具一般是余弦定理或者正弦定理.19、(1);(2).【解析】

(1)應用正弦的二倍角公式結(jié)合正弦定理可得,從而得.(2)用余弦定理求得,再由三角形面積公式可得三角形面積.【詳解】(1)因為,由正弦定理,因為,,所以.因為,所以.(2)因為,,,由余弦定理得,解得或,均適合題.當時,的面積為.當時,的面積為.【點睛】本題考查二倍角公式,正弦定理,余弦定理,考查三角形面積公式.三角形中可用公式很多,關(guān)鍵是確定先用哪個公式,再用哪個公式,象本題第(2)小題選用余弦定理求出,然后可直接求出三角形面積,解法簡捷.20、40m.【解析】試題分析:本題是解三角形的實際應用題,根據(jù)題意分析出圖中的數(shù)據(jù),即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入數(shù)據(jù),運算即可得出結(jié)果.試題解析:根據(jù)題意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即電視塔的高度為40m考點:解三角形.21、(1);(2)【解析】

(1)根據(jù)和正弦定理余弦定理求得.(2)先利用正弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論