天津市濱海七所重點(diǎn)學(xué)校2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
天津市濱海七所重點(diǎn)學(xué)校2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
天津市濱海七所重點(diǎn)學(xué)校2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
天津市濱海七所重點(diǎn)學(xué)校2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
天津市濱海七所重點(diǎn)學(xué)校2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

天津市濱海七所重點(diǎn)學(xué)校2024屆高一下數(shù)學(xué)期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.ΔABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知C=60°,b=6,c=3,則A=A.45° B.60° C.75° D.90°2.一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄?,從中任意取出一個(gè),則取出的小正方體兩面涂有油漆的概率是()A.127 B.29 C.43.已知函數(shù),,若成立,則的最小值為()A. B. C. D.4.已知,,,若,則等于()A. B. C. D.5.如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計(jì)圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計(jì)圖,則下列說法錯(cuò)誤的是()A.3球以下(含3球)的人數(shù)為10B.4球以下(含4球)的人數(shù)為17C.5球以下(含5球)的人數(shù)無法確定D.5球的人數(shù)和6球的人數(shù)一樣多6.一個(gè)盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個(gè),從中摸出1個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.757.已知m,n是兩條不同的直線,是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則8.已知等差數(shù)列的前項(xiàng)和為,,,則使取得最大值時(shí)的值為()A.5 B.6 C.7 D.89.若,是夾角為的兩個(gè)單位向量,則與的夾角為()A. B. C. D.10.若一個(gè)三角形,采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原三角形面積的()A.倍 B.2倍 C.倍 D.倍二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,是與的等比中項(xiàng),則最小值為_________.12.在中,已知M是AB邊所在直線上一點(diǎn),滿足,則________.13.?dāng)?shù)列滿足:,,則______.14.中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長為1.則該半正多面體的所有棱長和為_______.15.已知實(shí)數(shù)滿足約束條件,若目標(biāo)函數(shù)僅在點(diǎn)處取得最小值,則的取值范圍是__________.16.在等比數(shù)列中,已知,則=________________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.18.設(shè)為數(shù)列的前項(xiàng)和,.(1)求證:數(shù)列是等比數(shù)列;(2)求證:.19.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面積.20.在三棱錐中,平面平面,,,分別是棱,上的點(diǎn)(1)為的中點(diǎn),求證:平面平面.(2)若,平面,求的值.21.已知函數(shù).(1)判斷函數(shù)奇偶性;(2)討論函數(shù)的單調(diào)性;(3)比較與的大小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的內(nèi)角和定理求出角A【詳解】由正弦定理得bsinB=∵b<c,則B<C,所以,B=45°,由三角形的內(nèi)角和定理得故選:C.【點(diǎn)睛】本題考查利用正弦定理解三角形,也考查了三角形內(nèi)角和定理的應(yīng)用,在解題時(shí)要注意正弦值所對的角有可能有兩角,可以利用大邊對大角定理或兩角之和小于180°2、C【解析】

先求出基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),由此能求出在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率.【詳解】∵一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,∴基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),則在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率P=1227=故選:C【點(diǎn)睛】本題考查概率的求法,考查古典概型、正方體性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、空間想象能力,考查函數(shù)與方程思想,是基礎(chǔ)題.3、B【解析】,則,所以,則,易知,,則在單調(diào)遞減,單調(diào)遞增,所以,故選B。點(diǎn)睛:本題考查導(dǎo)數(shù)的綜合應(yīng)用。利用導(dǎo)數(shù)求函數(shù)的極值和最值是導(dǎo)數(shù)綜合應(yīng)用題型中的常見考法。通過求導(dǎo),首先觀察得到導(dǎo)函數(shù)的極值點(diǎn),利用圖象判斷出單調(diào)增減區(qū)間,得到最值。4、A【解析】

根據(jù)向量的坐標(biāo)運(yùn)算法則,依據(jù)題意列出等式求解.【詳解】由題知:,,,因?yàn)?所以,故,故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.5、D【解析】

據(jù)投籃成績的條形統(tǒng)計(jì)圖,結(jié)合中位數(shù)的定義,對選項(xiàng)中的命題分析、判斷即可.【詳解】根據(jù)投籃成績的條形統(tǒng)計(jì)圖,3球以下(含3球)的人數(shù)為,6球以下(含6球)的人數(shù)為,結(jié)合中位數(shù)是5知4球以下(含4球)的人數(shù)為不多于17,而由條形統(tǒng)計(jì)圖得4球以下(含4球)的人數(shù)不少于,因此4球以下(含4球)的人數(shù)為17所以5球的人數(shù)和6球的人數(shù)一共是17,顯然5球的人數(shù)和6球的人數(shù)不一樣多,故選D.【點(diǎn)睛】本題考查命題真假的判斷,考查條形統(tǒng)計(jì)圖、中位數(shù)的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.6、D【解析】

由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球?yàn)榛コ馐录鶕?jù)互斥事件的和即可求解.【詳解】因?yàn)閺闹忻?個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因?yàn)閺暮凶又忻?個(gè)球?yàn)楹谇蚧蚣t球?yàn)榛コ馐录悦龊谇蚧蚣t球的概率,故選D.【點(diǎn)睛】本題主要考查了兩個(gè)互斥事件的和事件,其概率公式,屬于中檔題.7、C【解析】

利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對選項(xiàng)分析選擇.【詳解】對于A,若,,則或者;故A錯(cuò)誤;對于B,若,則可能在內(nèi)或者平行于;故B錯(cuò)誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應(yīng)用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運(yùn)用定理是關(guān)鍵.8、D【解析】

由題意求得數(shù)列的通項(xiàng)公式為,令,解得,即可得到答案.【詳解】由題意,根據(jù)等差數(shù)列的性質(zhì),可得,即又由,即,所以等差數(shù)列的公差為,又由,解得,所以數(shù)列的通項(xiàng)公式為,令,解得,所以使得取得最大值時(shí)的值為8,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和最值問題,其中解答中熟記等差數(shù)列的性質(zhì)和通項(xiàng)公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、A【解析】

根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.10、C【解析】

以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法看三角形底邊長和高的變化即可.【詳解】以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法知,三角形的底長度不變,高所在的直線為y′軸,長度減半,故三家性的高變?yōu)樵瓉淼膕in45°=,故直觀圖中三角形面積是原三角形面積的.故選C.【點(diǎn)睛】本題重點(diǎn)考查了斜二側(cè)畫法、平面圖形的面積的求解方法等知識(shí),屬于中檔題.解題關(guān)鍵是準(zhǔn)確理解斜二側(cè)畫法的內(nèi)涵,與x軸平行的線段長度保持不變,與y軸平行的線段的長度減少為原來的一半.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

根據(jù)等比中項(xiàng)定義得出的關(guān)系,然后用“1”的代換轉(zhuǎn)化為可用基本不等式求最小值.【詳解】由題意,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號成立.所以最小值為1.故答案為:1.【點(diǎn)睛】本題考查等比中項(xiàng)的定義,考查用基本不等式求最值.解題關(guān)鍵是用“1”的代換找到定值,從而可用基本不等式求最值.12、3【解析】

由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【詳解】因?yàn)镸在直線AB上,所以可設(shè),

可得,即,又,則由與不共線,所以,解得.故答案為:3【點(diǎn)睛】本題考查向量的減法和向量共線的利用,屬于基礎(chǔ)題.13、【解析】

可通過賦值法依次進(jìn)行推導(dǎo),找出數(shù)列的周期,進(jìn)而求解【詳解】由,,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)故數(shù)列從開始,以3為周期故故答案為:【點(diǎn)睛】本題考查數(shù)列的遞推公式,能根據(jù)遞推公式找出數(shù)列的規(guī)律是解題的關(guān)鍵,屬于中檔題14、【解析】

取半正多面體的截面正八邊形,設(shè)半正多面體的棱長為,過分別作于,于,可知,,可求出半正多面體的棱長及所有棱長和.【詳解】取半正多面體的截面正八邊形,由正方體的棱長為1,可知,易知,設(shè)半正多面體的棱長為,過分別作于,于,則,,解得,故該半正多面體的所有棱長和為.【點(diǎn)睛】本題考查了空間幾何體的結(jié)構(gòu),考查了空間想象能力與計(jì)算求解能力,屬于中檔題.15、【解析】

利用數(shù)形結(jié)合,討論的范圍,比較斜率大小,可得結(jié)果.【詳解】如圖,當(dāng)時(shí),,則在點(diǎn)處取最小值,符合當(dāng)時(shí),令,要在點(diǎn)處取最小值,則當(dāng)時(shí),要在點(diǎn)處取最小值,則綜上所述:故答案為:【點(diǎn)睛】本題考查目標(biāo)函數(shù)中含參數(shù)的線性規(guī)劃問題,難點(diǎn)在于尋找斜率之間的關(guān)系,屬中檔題.16、【解析】三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得面積的最大值.【詳解】解:(I)因?yàn)?,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以當(dāng)且僅當(dāng)時(shí)取等號,所以△ABC面積的最大值為方法2:因?yàn)?,所以,,所以,所以,?dāng)且僅當(dāng),即,當(dāng)時(shí)取等號.所以△ABC面積的最大值為.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.18、(1)見解析;(2)見解析.【解析】

(1)令,由求出的值,再令,由得,將兩式相減并整理得,計(jì)算出為非零常數(shù)可證明出數(shù)列為等比數(shù)列;(2)由(1)得出,可得出,利用放縮法得出,利用等比數(shù)列求和公式分別求出數(shù)列和的前項(xiàng)和,從而可證明出所證不等式成立.【詳解】(1)當(dāng)時(shí),,解得;當(dāng)時(shí),由得,上述兩式相減得,整理得.則,且.所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;(2)由(1)可知,則.因?yàn)椋?又因?yàn)?,所以.綜上,.【點(diǎn)睛】本題考查利用前項(xiàng)和求數(shù)列通項(xiàng),考查等比數(shù)列的定義以及放縮法證明數(shù)列不等式,解題時(shí)要根據(jù)數(shù)列遞推公式或通項(xiàng)公式的結(jié)構(gòu)選擇合適的方法進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.19、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大邊對大角可求C為銳角,根據(jù)同角三角函數(shù)基本關(guān)系式可求cosC的值.(2)利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sinB的值,根據(jù)三角形的面積公式即可計(jì)算得解.【詳解】(1)由題意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C為銳角,∴cosC===,(2)因?yàn)锳+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC?AB?sinB=.【點(diǎn)睛】本題主要考查了正弦定理,大邊對大角,同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(1)證明見解析;(2)【解析】

(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進(jìn)而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【詳解】(1),為的中點(diǎn),所以.又因?yàn)槠矫嫫矫妫矫嫫矫?,且平面,所以平面,又平面,所以平面平?(2)∵平面,面,面面∴,∴.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論