齊齊哈爾市重點中學(xué)2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第1頁
齊齊哈爾市重點中學(xué)2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第2頁
齊齊哈爾市重點中學(xué)2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第3頁
齊齊哈爾市重點中學(xué)2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第4頁
齊齊哈爾市重點中學(xué)2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

齊齊哈爾市重點中學(xué)2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在正方體中,與所成的角為()A.30° B.90° C.60° D.120°2.圓與圓的位置關(guān)系是()A.外離 B.相交 C.內(nèi)切 D.外切3.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含4.把函數(shù)的圖象沿軸向右平移個單位,再把所得圖象上各點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼模傻煤瘮?shù)的圖象,則的解析式為()A. B.C. D.5.已知函數(shù),則()A. B. C. D.6.已知a,,若關(guān)于x的不等式的解集為,則()A. B. C. D.7.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.把十進(jìn)制數(shù)化為二進(jìn)制數(shù)為A. B.C. D.9.如圖所示是的圖象的一段,它的一個解析式為()A. B.C. D.10.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期是________.12.如圖,曲線上的點與軸的正半軸上的點及原點構(gòu)成一系列正三角形,,,設(shè)正三角形的邊長為(記為),.數(shù)列的通項公式=______.13.已知,則__________.14.設(shè)的內(nèi)角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.15.若,則__________.16.對于任意x>0,不等式3x2-2mx+12>0三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.如圖所示,是正三角形,和都垂直于平面,且,,是的中點,求證:(1)平面;(2).19.的內(nèi)角的對邊分別為,已知.(1)求角;(2)若,求的面積.20.已知數(shù)列的前項和為(1)證明:數(shù)列是等差數(shù)列;(2)設(shè),求數(shù)列的前2020項和.21.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

把異面直線與所成的角,轉(zhuǎn)化為相交直線與所成的角,利用為正三角形,即可求解.【詳解】連結(jié),則,所以相交直線與所成的角,即為異面直線與所成的角,連結(jié),則是正三角形,所以,即異面直線與所成的角,故選C.【點睛】本題主要考查了空間中異面直線及其所成角的求法,其中根據(jù)異面直線的定義,把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、D【解析】

根據(jù)圓的方程求得兩圓的圓心和半徑,根據(jù)圓心距和兩圓半徑的關(guān)系可確定位置關(guān)系.【詳解】由圓的方程可知圓圓心為,半徑;圓圓心為,半徑圓心距為:兩圓的位置關(guān)系為:外切本題正確選項:【點睛】本題考查圓與圓的位置關(guān)系的判定,關(guān)鍵是能夠通過圓的方程確定兩圓的圓心和半徑,從而根據(jù)圓心距和半徑的關(guān)系確定位置關(guān)系.3、B【解析】

首先把兩個圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,求出其圓心坐標(biāo)和半徑,再比較圓心距與半徑的關(guān)系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關(guān)系是相離.故選:B【點睛】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡單題.4、C【解析】

根據(jù)三角函數(shù)圖像變換的原則,即可得出結(jié)果.【詳解】先把函數(shù)的圖象沿軸向右平移個單位,得到;再把圖像上各點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?,得?故選C【點睛】本題主要考查三角函數(shù)的圖像變換問題,熟記圖像變換的原則即可,屬于??碱}型.5、A【解析】

由題意結(jié)合函數(shù)的解析式分別求得的值,然后求解兩者之差即可.【詳解】由題意可得:,,則.故選:A.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值.6、D【解析】

由不等式的解集為R,得的圖象要開口向上,且判別式,即可得到本題答案.【詳解】由不等式的解集為R,得函數(shù)的圖象要滿足開口向上,且與x軸至多有一個交點,即判別式.故選:D【點睛】本題主要考查一元二次不等式恒成立問題.7、A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題8、C【解析】選C.9、D【解析】

根據(jù)函數(shù)的圖象,得出振幅與周期,從而求出與的值.【詳解】根據(jù)函數(shù)的圖象知,振幅,周期,即,解得;所以時,,;解得,,所以函數(shù)的一個解析式為.故答案為D.【點睛】本題考查了函數(shù)的圖象與性質(zhì)的應(yīng)用問題,考查三角函數(shù)的解析式的求法,屬于基礎(chǔ)題.10、A【解析】

利用正弦定理把題設(shè)等式中的邊換成角的正弦,進(jìn)而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)函數(shù)的周期公式計算即可.【詳解】函數(shù)的最小正周期是.故答案為【點睛】本題主要考查了正切函數(shù)周期公式的應(yīng)用,屬于基礎(chǔ)題.12、【解析】

先得出直線的方程為,與曲線的方程聯(lián)立得出的坐標(biāo),可得出,并設(shè),根據(jù)題中條件找出數(shù)列的遞推關(guān)系式,結(jié)合遞推關(guān)系式選擇作差法求出數(shù)列的通項公式,即利用求出數(shù)列的通項公式?!驹斀狻吭O(shè)數(shù)列的前項和為,則點的坐標(biāo)為,易知直線的方程為,與曲線的方程聯(lián)立,解得,;當(dāng)時,點、,所以,點,直線的斜率為,則,即,等式兩邊平方并整理得,可得,以上兩式相減得,即,易知,所以,即,所以,數(shù)列是等差數(shù)列,且首項為,公差也為,因此,.故答案為:。【點睛】本題考查數(shù)列通項的求解,根據(jù)已知條件找出數(shù)列的遞推關(guān)系是解題的關(guān)鍵,在求通項公式時需結(jié)合遞推公式的結(jié)構(gòu)選擇合適的方法求解數(shù)列的通項公式,考查分析問題的能力,屬于難題。13、【解析】14、【解析】

由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點睛】本題主要考查余弦定理以及韋達(dá)定理,屬于中檔題.15、;【解析】

把分子的1換成,然后弦化切,代入計算.【詳解】.故答案為-1.【點睛】本題考查三角函數(shù)的化簡求值.解題關(guān)鍵是“1”的代換,即,然后弦化切.16、(-∞,6)【解析】

先參變分離轉(zhuǎn)化為對應(yīng)函數(shù)最值問題,再通過求函數(shù)最值得結(jié)果.【詳解】因為3x2-2mx+12>0,所以m<3x2+【點睛】在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用條件求數(shù)列的首項與公比,確定所求.(2)將分組,,再利用等比數(shù)列前n項和公式求和【詳解】解:(1)設(shè)等比數(shù)列的公比為,所以,由,所以,則;(2),所以數(shù)列的前項和,則數(shù)列的前項和.【點睛】本題考查等比數(shù)列的通項,分組求和法,考查計算能力,屬于中檔題.18、(1)見解析.(2)見解析.【解析】

(1)先取的中點,連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)根據(jù)線面垂直的判定定理先證明平面,再由線面垂直的性質(zhì),即可得到.【詳解】(1)取的中點,連接,可得,且.平面,平面,.又,,且,∴四邊形是平行四邊形,.又平面,平面,平面.(2)在中,,為的中點,.是正三角形,為的中點,,.平面,∴四邊形是矩形,,又,平面.又平面,.,平面.又平面,.【點睛】本題主要考查線面平行以及線面垂直,熟記線面平行與垂線的判定定理以及性質(zhì)定理即可,屬于??碱}型.19、(1);(2)【解析】

(1)首先利用正弦定理的邊角互化,可將等式化簡為,再利用,可知,最后化簡求值;(2)利用余弦定理可求得,代入求面積.【詳解】(1)由已知以及余弦定理得:所以,(2)由題知,【點睛】本題第一問考查了正弦定理,第二問考查了余弦定理和面積公式,當(dāng)一個式子有邊也有角時,一般可通過正弦定理邊角互化轉(zhuǎn)化為三角函數(shù)恒等變形問題,而對于余弦定理與三角形面積的關(guān)系時,需重視的變形使用.20、(1)見解析;(2)3030【解析】

(1)當(dāng)時,可求出首項,當(dāng)時,利用即可求出通項公式,進(jìn)而證明是等差數(shù)列;(2)可將奇數(shù)項和偶數(shù)項合并求和即可得到答案.【詳解】(1)當(dāng)時,當(dāng)時,綜上,.因為,所以是等差數(shù)列.(2)法一:,的前2020項和為:法二:,的前2020項和為:.【點睛】本題主要考查等差數(shù)列的證明,分組求和的相關(guān)計算,意在考查學(xué)生的分析能力和計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論