版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省聊城市于集鎮(zhèn)中學高一下數(shù)學期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,則()A. B.C. D.2.若且,則下列四個不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④3.化為弧度是A. B. C. D.4.已知弧度數(shù)為2的圓心角所對的弦長也是2,則這個圓心角所對的弧長是()A.2 B. C. D.5.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向6.設平面向量,,若,則等于()A. B. C. D.7.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從中任取3個不同的數(shù),則這3個數(shù)構成一組勾股數(shù)的概率為()A. B. C. D.8.等差數(shù)列中,,,下列結論錯誤的是()A.,,成等比數(shù)列 B.C. D.9.,,是空間三條不同的直線,則下列命題正確的是A., B.,C.,,共面 D.,,共點,,共面10.直線的傾斜角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在直角梯形.中,,分別為的中點,以為圓心,為半徑的圓交于,點在上運動(如圖).若,其中,則的最大值是________.12.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.13.若角是第四象限角,則角的終邊在_____________14.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.15.用秦九韶算法求多項式當時的值的過程中:,__.16.已知直線l過點P(-2,5),且斜率為-,則直線l的方程為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,正三棱柱的各棱長均為,為棱的中點,求異面直線與所成角的余弦值.18.在中,角A,B,C,的對應邊分別為,且.(Ⅰ)求角B的大??;(Ⅱ)若的面積為,,D為AC的中點,求BD的長.19.在中,內角,,的對邊分別為,已知.(1)求角的大小;(2)若,且,求的面積.20.已知數(shù)列的前項和為,且滿足,().(Ⅰ)求的值,并求數(shù)列的通項公式;(Ⅱ)設數(shù)列的前項和為,求證:().21.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達式,并用數(shù)學歸納法證明.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
先由誘導公式得到a=cos2019°=–cos39°,再根據(jù)39°∈(30°,45°)得到大致范圍.【詳解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故選A.【點睛】這個題目考查了三角函數(shù)的誘導公式的應用,以及特殊角的三角函數(shù)值的應用,題目比較基礎.2、C【解析】
根據(jù)且,可得,,且,,根據(jù)不等式的性質可逐一作出判斷.【詳解】由且,可得,∴,且,,由此可得①當a=0時,不成立,②由,,則成立,③由,,可得成立,④由,若,則不成立,因此,一定成立的是②③,故選:C.【點睛】本題考查不等式的基本性質的應用,屬于基礎題.3、D【解析】
由于,則.【詳解】因為,所以,故選D.【點睛】本題考查角度制與弧度制的互化.4、B【解析】
先由已知條件求出扇形的半徑為,再結合弧長公式求解即可.【詳解】解:設扇形的半徑為,由弧度數(shù)為2的圓心角所對的弦長也是2,可得,由弧長公式可得:這個圓心角所對的弧長是,故選:B.【點睛】本題考查了扇形的弧長公式,重點考查了運算能力,屬基礎題.5、A【解析】
通過計算兩個向量的數(shù)量積,然后再判斷兩個向量能否寫成的形式,這樣可以選出正確答案.【詳解】因為,,所以,而不存在實數(shù),使成立,因此與不共線,故本題選A.【點睛】本題考查了兩個平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學運算能力.6、D【解析】分析:由向量垂直的條件,求解,再由向量的模的公式和向量的數(shù)量積的運算,即可求解結果.詳解:由題意,平面向量,且,所以,所以,即,又由,所以,故選D.點睛:本題主要考查了向量的數(shù)量積的運算和向量模的求解,其中解答中熟記平面向量的數(shù)量積的運算公式和向量模的計算公式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、C【解析】
試題分析:從中任取3個不同的數(shù)共有10種不同的取法,其中的勾股數(shù)只有3,4,5,故3個數(shù)構成一組勾股數(shù)的取法只有1種,故所求概率為,故選C.考點:古典概型8、C【解析】
根據(jù)條件得到公差,然后得到等差數(shù)列的通項,從而對四個選項進行判斷,得到答案.【詳解】等差數(shù)列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比數(shù)列,故A選項正確,,故B選項正確,,故C選項錯誤,,故D選項正確.故選:C.【點睛】本題考查求等差數(shù)列的項,等差數(shù)列求前項的和,屬于簡單題.9、B【解析】
解:因為如果一條直線平行于兩條垂線中的一條,必定垂直于另一條.選項A,可能相交.選項C中,可能不共面,比如三棱柱的三條側棱,選項D,三線共點,可能是棱錐的三條棱,因此錯誤.選B.10、C【解析】
求出直線的斜率,然后求解直線的傾斜角.【詳解】由題意知,直線的斜率為,所以直線的傾斜角為.故選:C.【點睛】本題考查直線的斜率與傾斜角的求法,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
建立直角坐標系,設,根據(jù),表示出,結合三角函數(shù)相關知識即可求得最大值.【詳解】建立如圖所示的平面直角坐標系:,分別為的中點,,以為圓心,為半徑的圓交于,點在上運動,設,,即,,所以,兩式相加:,即,要取得最大值,即當時,故答案為:【點睛】此題考查平面向量線性運算,處理平面幾何相關問題,涉及三角換元,轉化為求解三角函數(shù)的最值問題.12、【解析】
利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【詳解】由扇形的弧長、半徑以及圓心角之間的關系可知,該扇形的圓心角大小為.故答案為:.【點睛】本題考查扇形圓心角的計算,解題時要熟悉扇形的弧長、半徑以及圓心角之間的關系,考查計算能力,屬于基礎題.13、第二或第四象限【解析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【詳解】因為角是第四象限角,所以,即有,當為偶數(shù)時,角的終邊在第四象限;當為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【點睛】本題主要考查象限角的集合的應用.14、20【解析】
先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【詳解】設的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當時,取得最大值400故答案為:20【點睛】等差數(shù)列的是關于的二次函數(shù),但要注意只能取正整數(shù).15、1【解析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當x=2時,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點睛】本題考查了秦九韶算法,考查了推理能力與計算能力,屬于基礎題.16、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】
作交于,則為異面直線與所成角,在中求出各邊的長度,根據(jù)余弦定理,得到的余弦值,即為答案.【詳解】作交于,則為異面直線與所成角,因為為中點,所以是的一條中位線,所以,因為正三棱柱,所以面,而面,所以所以在中,,則,在中,,則,在中,由余弦定理得.故答案為【點睛】本題考查求異面直線所成的角的余弦值,余弦定理,屬于簡單題.18、(I);(II)【解析】
(I)由正弦定理得,展開結合兩角和的正弦整理求解;(Ⅱ)由面積得,利用平方求解即可【詳解】(I),由正弦定理得整理得,則,,.(II),,兩邊平方得【點睛】本題考查正弦定理及兩角和的正弦,三角形內角和定理,考查向量的數(shù)量積及模長,準確計算是關鍵,是中檔題19、(1);(2).【解析】
(1)由二倍角公式得,求得則角可求;(2),得,由正弦定理得,再結合余弦定理得則面積可求【詳解】(1)因為,所以,解得,因為,所以;(2)因為,所以,由正弦定理得所以,由余弦定理,,所以,所以.【點睛】本題考查二倍角公式,正余弦定理解三角形,準確計算是關鍵,是基礎題20、(Ⅰ),,(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)和項與通項關系得,利用等比數(shù)列定義求得結果(Ⅱ)利用放縮法以及等比數(shù)列求和公式證得結果【詳解】(Ⅰ),由得,兩式相減得故,又所以數(shù)列是以2為首項,公比為2的等比數(shù)列,因此,即.(Ⅱ)當時,,所以.當時,故又當時,,.因此對一切成立.【點睛】本題主要考查了利用和的關系以及構造法求數(shù)列的通項公式,同時考查利用放縮法證明數(shù)列不等式,解題難點是如何放縮,意在考查學生的數(shù)學建模能力和數(shù)學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物聯(lián)網(wǎng)設備管理系統(tǒng)開發(fā)合同2篇
- 二零二四年墻體廣告租賃合同涵蓋廣告位更新維護責任3篇
- 2025年房地產項目委托產權登記及過戶服務合同3篇
- 二零二五年度衛(wèi)生間清潔保養(yǎng)服務合同3篇
- 二零二五年房地產物業(yè)管理服務委托合同模板3篇
- 2025年度生態(tài)環(huán)保型建筑材料采購合同3篇
- 二零二五年服裝店庫存管理師聘用合同樣本3篇
- 2025年度網(wǎng)絡安全防護技術解決方案定制合同3篇
- 二零二五年度河堤施工環(huán)境保護與污染防治合同3篇
- 二零二五年度環(huán)保材料買賣合同規(guī)范文本2篇
- 【人教版】九年級化學上冊期末試卷及答案【【人教版】】
- 四年級數(shù)學上冊期末試卷及答案【可打印】
- 人教版四年級數(shù)學下冊課時作業(yè)本(含答案)
- 中小學人工智能教育方案
- 高三完形填空專項訓練單選(部分答案)
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
- 《職業(yè)培訓師的培訓》課件
- 建筑企業(yè)新年開工儀式方案
- 營銷組織方案
- 初中英語閱讀理解專項練習26篇(含答案)
評論
0/150
提交評論