版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
包頭市重點中學(xué)2024年高一下數(shù)學(xué)期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線上存在點滿足則實數(shù)的最大值為A. B. C. D.2.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.3.把一塊長是10,寬是8,高是6的長方形木料削成一個體積最大的球,這個球的體積等于()A. B.480 C. D.4.在中,若,則的面積為().A.8 B.2 C. D.45.在△ABC中,點D在邊BC上,若,則A.+ B.+ C.+ D.+6.(2017新課標(biāo)全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.7.已知圓C1:x2+y2+4y+3=0,圓C2:x2+A.210-3 B.210+38.正項等比數(shù)列與等差數(shù)列滿足,,,則的大小關(guān)系為()A. B. C. D.不確定9.下列說法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則10.下列選項正確的是()A.若,則B.若,則C.若,則D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的反函數(shù)為____________.12.函數(shù)的最小正周期為_______.13.已知是第二象限角,且,且______.14.正項等比數(shù)列中,為數(shù)列的前n項和,,則的取值范圍是____________.15.函數(shù)的零點個數(shù)為__________.16.已知向量,若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.化簡.18.已知0<α<π,cos(1)求tanα+(2)求sin2α+119.向量,,,函數(shù).(1)求的表達(dá)式,并在直角坐標(biāo)中畫出函數(shù)在區(qū)間上的草圖;(2)若方程在上有兩個根、,求的取值范圍及的值.20.如圖,在三棱柱中,、分別是棱,的中點,求證:(1)平面;(2)平面平面.21.已知,是實常數(shù).(1)當(dāng)時,判斷函數(shù)的奇偶性,并給出證明;(2)若是奇函數(shù),不等式有解,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先畫出可行域,然后結(jié)合交點坐標(biāo)平移直線即可確定實數(shù)m的最大值.【詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點坐標(biāo)為(-1,-2),平移直線x=m,移到C點或C點的左邊時,直線上存在點在平面區(qū)域內(nèi),所以,m≤-1,即實數(shù)的最大值為-1.【點睛】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.2、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應(yīng)用.3、A【解析】
由題意知,此球是棱長為6的正方體的內(nèi)切球,根據(jù)其幾何特征知,此球的直徑與正方體的棱長是相等的,故可得球的直徑為6,再由球的體積公式求解即可.【詳解】解:由已知可得球的直徑為6,故半徑為3,其體積是,故選:.【點睛】本題考查長方體內(nèi)切球的幾何特征,以及球的體積公式,屬于基礎(chǔ)題.4、C【解析】
由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【點睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運算能力.5、C【解析】
根據(jù)向量減法和用表示,再根據(jù)向量加法用表示.【詳解】如圖:因為,所以,故選C.【點睛】本題考查向量幾何運算的加減法,結(jié)合圖形求解.6、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.7、A【解析】
求出圓C1,C2的圓心坐標(biāo)和半徑,作出圓C1關(guān)于直線l的對稱圓C1',連結(jié)C1'C2,則C1'C2與直線l的交點即為P點,此時M點為P【詳解】由圓C1:x可知圓C1圓心為0,-2圓C2圓心為3,-1圓C1關(guān)于直線l:y=x+1的對稱圓為圓C連結(jié)C1'C2,交l于P,則此時M點為PC1'與圓C1'的交點關(guān)于直線l對稱的點,N最小值為C1而C1∴PM+PN【點睛】本題考查了圓方程的綜合應(yīng)用,考查了利用對稱關(guān)系求曲線上兩點間的最小距離,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.解決解析幾何中的最值問題一般有兩種方法:一是幾何意義,特別是用曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.8、B【解析】
利用分析的關(guān)系即可.【詳解】因為正項等比數(shù)列與等差數(shù)列,故又,當(dāng)且僅當(dāng)時“=”成立,又即,故,故選:B【點睛】本題主要考查等差等比數(shù)列的性質(zhì)與基本不等式的“一正二定三相等”.若是等比數(shù)列,且,則若是等差數(shù)列,且,則9、D【解析】
利用不等式的性質(zhì)或舉反例的方法來判斷各選項中不等式的正誤.【詳解】對于A選項,若且,則,該選項錯誤;對于B選項,取,,,,則,均滿足,但,B選項錯誤;對于C選項,取,,則滿足,但,C選項錯誤;對于D選項,由不等式的性質(zhì)可知該選項正確,故選:D.【點睛】本題考查不等式正誤的判斷,常用不等式的性質(zhì)以及舉反例的方法來進行驗證,考查推理能力,屬于基礎(chǔ)題.10、B【解析】
通過逐一判斷ABCD選項,得到答案.【詳解】對于A選項,若,代入,,故A錯誤;對于C選項,等價于,故C錯誤;對于D選項,若,則,故D錯誤,所以答案選B.【點睛】本題主要考查不等式的相關(guān)性質(zhì),難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由原函數(shù)的解析式解出自變量x的解析式,再把x和y交換位置,即可得到結(jié)果.【詳解】解:記∴故反函數(shù)為:【點睛】本題考查函數(shù)與反函數(shù)的定義,求反函數(shù)的方法和步驟,注意反函數(shù)的定義域是原函數(shù)的值域.12、【解析】
將三角函數(shù)進行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結(jié)果.【詳解】,.【點睛】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.13、【解析】
利用同角三角函數(shù)的基本關(guān)系求出,然后利用誘導(dǎo)公式可求出的值.【詳解】是第二象限角,則,由誘導(dǎo)公式可得.故答案為:.【點睛】本題考查利用同角三角函數(shù)的基本關(guān)系和誘導(dǎo)公式求值,考查計算能力,屬于基礎(chǔ)題.14、【解析】
利用結(jié)合基本不等式求得的取值范圍【詳解】由題意知,,且,所以,當(dāng)且僅當(dāng)?shù)忍柍闪?,所?故答案為:【點睛】本題考查等比數(shù)列的前n項和及性質(zhì),利用性質(zhì)結(jié)合基本不等式求最值是關(guān)鍵15、3【解析】
運用三角函數(shù)的誘導(dǎo)公式先將函數(shù)化簡,再在同一直角坐標(biāo)系中做出兩支函數(shù)的圖像,觀察其交點的個數(shù)即得解.【詳解】由三角函數(shù)的誘導(dǎo)公式得,所以令,求零點的個數(shù)轉(zhuǎn)化求方程根的個數(shù),因此在同一直角坐標(biāo)系分別做出和的圖象,觀察兩支圖象的交點的個數(shù)為個,注意在做的圖像時當(dāng)時,,故得解.【點睛】本題考查三角函數(shù)的有界性和余弦函數(shù)與對數(shù)函數(shù)的交點情況,屬于中檔題.16、【解析】
直接利用向量平行性質(zhì)得到答案.【詳解】,若故答案為【點睛】本題考查了向量平行的性質(zhì),屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
利用誘導(dǎo)公式進行化簡,即可得到答案.【詳解】原式.【點睛】本題考查誘導(dǎo)公式的應(yīng)用,考查運算求解能力,求解時注意奇變偶不變,符號看象限這一口訣的應(yīng)用.18、(1)12;(2)1【解析】
(1)利用同角三角函數(shù)平方和商數(shù)關(guān)系求得tanα;利用兩角和差正切公式求得結(jié)果;(2)利用二倍角公式化簡所求式子,分子分母同時除以cos2α【詳解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【點睛】本題考查利用同角三角函數(shù)、兩角和差正切公式、二倍角的正余弦公式化簡求值問題,關(guān)鍵是能夠利用求解關(guān)于正余弦的齊次式的方式,將問題轉(zhuǎn)化為與tanα19、(1),見解析(2)或,或.【解析】
(1)根據(jù)數(shù)量積的坐標(biāo)表示,二倍角公式,輔助角公式即可求出的表達(dá)式,再根據(jù)五點作圖法或者平移法即可作出其在上的草圖;(2)依題意知,函數(shù)在上的圖象與直線有兩個交點,根據(jù)數(shù)形結(jié)合,即可求出的取值范圍及的值.【詳解】(1)依題知,.將正弦函數(shù)的圖象向右平移個單位,再將各點的橫坐標(biāo)變?yōu)樵瓉淼模纯傻玫降膱D象,截取的部分即得,如圖所示:(2)依題可知,函數(shù)在上的圖象與直線有兩個交點,根據(jù)數(shù)形結(jié)合,可知,或,當(dāng)時,兩交點關(guān)于直線對稱,所以;當(dāng)時,兩交點關(guān)于直線對稱,所以.故或,或.【點睛】本題主要考查數(shù)量積的坐標(biāo)表示,二倍角公式,輔助角公式的應(yīng)用,正弦型函數(shù)圖象的畫法,以及方程的根與兩函數(shù)圖象交點的個數(shù)關(guān)系的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力,數(shù)形結(jié)合能力,以及轉(zhuǎn)化能力,屬于中檔題.20、(1)見證明;(2)見證明【解析】
(1)設(shè)與的交點為,連結(jié),證明,再由線面平行的判定可得平面;(2)由為線段的中點,點是的中點,證得四邊形為平行四邊形,得到,進一步得到平面.再由平面,結(jié)合面面平行的判定可得平面平面.【詳解】證明:(1)設(shè)與的交點為,連結(jié),∵四邊形為平行四邊形,∴為中點,又是的中點,∴是三角形的中位線,則,又∵平面,平面,∴平面;(2)∵為線段的中點,點是的中點,∴且,則四邊形為平行四邊形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【點睛】本題考查直線與平面,平面與平面平行的判定,考查空間想象能力與思維能力,是中檔題.21、(1)為非奇非偶函數(shù),證明見解析;(2).【解析】
(1)當(dāng)時,,計算不相等,也不互為相反數(shù),可得出結(jié)論;(2)由奇函數(shù)的定義,求出的值,證明在上單調(diào)遞減,有解,化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版指標(biāo)房屋銷售協(xié)議條款版
- 二手房交易中介協(xié)議合同范本(2024版)
- 2025年度銷售業(yè)務(wù)員兼職崗位員工激勵與績效改進合同2篇
- 二零二五年度別墅景觀綠化養(yǎng)護合同3篇
- 二零二五版國際會展中心物業(yè)全面服務(wù)與管理協(xié)議3篇
- 專業(yè)廣告代理服務(wù)協(xié)議(2024版)版A版
- 2024項目合作中間人傭金協(xié)議書
- 二零二五年度雞苗運輸時間優(yōu)化及效率提升合同3篇
- 二零二五版?zhèn)€人汽車銷售代理合同模板3篇
- 二零二五年度二手汽車租賃與環(huán)保節(jié)能服務(wù)合同3篇
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級英語下冊寒假提前學(xué)(含答案)
- 2024年突發(fā)事件新聞發(fā)布與輿論引導(dǎo)合同
- 地方政府信訪人員穩(wěn)控實施方案
- 小紅書推廣合同范例
- 商業(yè)咨詢報告范文模板
- 幼兒園籃球課培訓(xùn)
- AQ 6111-2023個體防護裝備安全管理規(guī)范知識培訓(xùn)
- 老干工作業(yè)務(wù)培訓(xùn)
- 基底節(jié)腦出血護理查房
- 高中語文《勸學(xué)》課件三套
評論
0/150
提交評論